scholarly journals Earthquake july 17, 2017, Mw = 7.8 near the Komandorsky islands and strong seismic manifestations in the western segment of Aleut island arc

Author(s):  
A. I. Lutikov ◽  
E. A. Rogozhin ◽  
G. Yu. Donzova ◽  
V. N. Zhukovez

The tectonic position, seismological characteristics and features of the aftershock process of the source of the strongest Near-Aleutian earthquake on July 17, 2017 on the Commander Islands with Мw = 7.8 are considered. The analysis showed that the seismic source according to the distribution of aftershock epicenters in the form of a linearly elongated narrow zone with a length of about 400 km almost completely occupied the northern slope of the Commander island elevation and was located in the Bering fault zone. It covered the whole of this seismic-generating zone up to the transverse structure to the west of the Near Islands (Attu is.). In accordance with the focal mechanisms solution and the nature of the displacements in the foci of the main shock, the strongest foreshocks and aftershocks, the shift in the source was an almost pure right-sided shift. The aftershock process of the July 17 earthquake developed quite enough inertly for an earthquake of such strength. In addition, it has two features in comparison with the aftershock processes of most of the Kuril-Kamchatka earthquakes: 1) low release of the cumulative scalar seismic moment (M0cum aft), which according to various estimates was from 0.75% to 1.0% of the seismic moment of the main shock (M0me); 2) a very slow increase in the deficit in the release of the seismic moment (M0). At the same time, the duration of the quasi-stationary phase of M0cum release in aftershocks, estimated at about ½ year and covering a significant part of the duration of the entire aftershock process of this earthquake, seems unusually long. These features of the aftershock process of the Middle Aleutian earthquake on July 17, 2017 distinguish it from the aftershock processes characteristic of most strong Kuril-Kamchatka earthquakes. In general, its source can be considered as a transform between the two Benioff zones – Aleutian and Kuril-Kamchatka, and not subduction, that is characterise the last two.

Author(s):  
A. I. Lutikov ◽  
E. A. Rogozhin ◽  
G. Yu. Donzova ◽  
V. N. Zhukovez

The tectonic position, seismological characteristics and features of the aftershock process of the source of the strongest Near-Aleutian earthquake on July 17, 2017 on the Commander Islands with Мw = 7.8 are considered. The analysis showed that the seismic source according to the distribution of aftershock epicenters in the form of a linearly elongated narrow zone with a length of about 400 km almost completely occupied the northern slope of the Commander island elevation and was located in the Bering fault zone. It covered the whole of this seismic-generating zone up to the transverse structure to the west of the Near Islands (Attu is.). In accordance with the focal mechanisms solution and the nature of the displacements in the foci of the main shock, the strongest foreshocks and aftershocks, the shift in the source was an almost pure right-sided shift. The aftershock process of the July 17 earthquake developed quite enough inertly for an earthquake of such strength. In addition, it has two features in comparison with the aftershock processes of most of the Kuril-Kamchatka earthquakes: 1) low release of the cumulative scalar seismic moment (M0cum aft), which according to various estimates was from 0.75% to 1.0% of the seismic moment of the main shock (M0me); 2) a very slow increase in the deficit in the release of the seismic moment (M0). At the same time, the duration of the quasi-stationary phase of M0cum release in aftershocks, estimated at about ½ year and covering a significant part of the duration of the entire aftershock process of this earthquake, seems unusually long. These features of the aftershock process of the Middle Aleutian earthquake on July 17, 2017 distinguish it from the aftershock processes characteristic of most strong Kuril-Kamchatka earthquakes. In general, its source can be considered as a transform between the two Benioff zones – Aleutian and Kuril-Kamchatka, and not subduction, that is characterise the last two.


Author(s):  
Е.А. Рогожин

В статье приведены сейсмологические и сейсмотектонические материалы о главном толчке и афтершоках Онийского-II землетрясения 7 сентября 2009 г. с Мs = 5,8 на южном склоне Большого Кавказа. Положение облака эпицентров основного толчка и афтершоков совпадает с северной ветвью очаговой зоны Рачинского землетрясения 29.04.1991 г. с МS = 7,0, I0 = 7-8. Глубина гипоцентра основного толчка составляет 8?15 км. В качестве действующей в очаге принята пологая плоскость, погружающаяся в север – северо-восточном направлении. Тип подвижки по такой плоскости – надвиг с компонентами правостороннего сдвига. Сейсмодислокации носили вторичный, гравитационный характер. Результаты палеосейсмологические исследований, проведенных в восточной части эпицентральной области, Рачинского землетрясения, показали, что в этом сейсмической очаге и раньше происходили сильне сейсмические толчки. Согласно полученным данням возраст предыдущего сильного землетрясения в Рача-Джавской зоне (т. е. до 1991 г.) – около 2000 лет назад. Еще одно, болем древнее событие произошло около 6000 лет назад. Период повторяемости сильних землетрясений, подобных катастрофе 1991 г., таким образом, составляет в среднем 2000-3000 лет. The article provides seismological and seismotectonic materials about the main shock and aftershocks of the Oni-II earthquake of 7 September 2009, with MS = 5,8 on the South slope of the Greater Caucasus. The position of the cloud of epicenters of the main shock and aftershocks coincides with the northern branch of the focal zone of 29.04.1991 Racha earthquake, MS = 7,0, I0 = 7?8. The focal depth of the main shock is 8 to 15 km. As the active in the focus adopted the sloping plane, plunging to the North – North-East direction. Type progress on such a plane – thrust with component of right-lateral strike-slip. Seismodislocationswere of secondary gravitational nature. The results of paleoseismological studies conducted in the Eastern part of the epicentral area of the Racha earthquake, showed that this seismic source the strong seismic shocks happened before. According to the obtained data, the age of the previous strong earthquake in the Racha – Dzhava zone (i.e., before 1991) – about 2000 years ago. Another, more ancient event occurred about 6,000 years ago. The recurrence period of strong earthquakes, similar to the disaster of 1991, thus, is an average of 2000?3000 years.


1983 ◽  
Vol 73 (3) ◽  
pp. 813-829
Author(s):  
P. Yi-Fa Huang ◽  
N. N. Biswas

abstract This paper describes the characteristics of the Rampart seismic zone by means of the aftershock sequence of the Rampart earthquake (ML = 6.8) which occurred in central Alaska on 29 October 1968. The magnitudes of the aftershocks ranged from about 1.6 to 4.4 which yielded a b value of 0.96 ± 0.09. The locations of the aftershocks outline a NNE-SSW trending aftershock zone about 50 km long which coincides with the offset of the Kaltag fault from the Victoria Creek fault. The rupture zone dips steeply (≈80°) to the west and extends from the surface to a depth of about 10 km. Fault plane solutions for a group of selected aftershocks, which occurred over a period of 22 days after the main shock, show simultaneous occurrences of strike-slip and normal faults. A comparison of the trends in seismicity between the neighboring areas shows that the Rampart seismic zone lies outside the area of underthrusting of the lithospheric plate in southcentral and central Alaska. The seismic zone outlined by the aftershock sequence appears to represent the formation of an intraplate fracture caused by regional northwest compression.


1981 ◽  
Vol 71 (3) ◽  
pp. 713-729 ◽  
Author(s):  
R. S. Crosson ◽  
E. T. Endo

abstract Initial focal mechanism determinations for the 29 November 1975 Kalapana, Hawaii, earthquake indicated discrepancy between the mechanism determined from teleseismic data by Ando and the mechanism determined using data from the local U.S. Geological Survey network surrounding the epicenter region. The resolution of this difference is crucial to correctly understand this earthquake, as well as to understand the tectonics of the south flank of Kilauea volcano. When a model with a low-velocity layer at the base of the crust is used for projection back to the focal sphere for the local network mechanisms, the discrepancy vanishes. To further investigate this result, focal mechanisms were determined using several contrasting models for a set of well-recorded earthquakes. A large number of these earthquakes have mechanisms identical to the main shock when the low-velocity layer model is used. Dispersion of P and T axes is also minimized by use of this model. A low-angle slip direction, favored for the main shock and typical of most other solutions, exhibits remarkable stability normal to the east rift zone of Kilauea. Our results suggest a tectonic model, similar in nature to that proposed by Ando, in which the south flank of Kilauea consists of a mobile block of crust which is relatively free to move laterally on a low-strength zone at about 10 km depth. Forceful injection of magma along the rift zones provides the loading stress which is released by catastrophic failure in the weak, horizontal layer in a cycle of perhaps 100 yr.


2014 ◽  
Vol 57 (2) ◽  
Author(s):  
Shoja Ansari ◽  
Ahmad Zamani

<p>In this paper the short-term seismic deformation of Iran is determined by the earthquake moment tensor summation. The study areas include the Alborz, Kopeh-Dagh, eastern Iran, Makran and Zagros orogenic belts. The spatial distribution and focal mechanisms of the earthquakes delineate the deformation zones. The mean directions of the P and T axes are determined by the equal area projection of the seismic moment tensors. The orientations of the P-axes are dominantly correlated with the NE crustal motion of Iran relative to Eurasia. The average strain rates are calculated in all of the regions. The maximum shear strain and dilatation rates are defined by the eigenvalues of the average strain rate tensors. The dilatation rate indicates that not only the dominant compression but also the subsidiary tension affects the Alborz and Makran orogenic belts. The velocity tensor components discriminate the vertical thickening and thinning of the crust in some regions of Iran. The seismic deformation rates, which are determined by the velocity tensors, are smaller than the geodetic deformation rates. In the high seismic deformation zones, such as the eastern Iran and Alborz, the geodetic deformation rate is comparable with the seismic deformation rate. Our results indicate that the NW Zagros and Kopeh-Dagh have the lowest seismic deformation rates. The seismic shortening rate increases from NW to SE in the Zagros orogenic belt. The seismic deformation orientations are different from the P-axes, probably due to the lateral translation. The maximum percentage of the seismic deformation in the study areas is related to the eastern Iran and the minimum one is related to the Makran orgenic belt. The average shape tensors indicate that the focal mechanisms in the Kopeh-Dagh have the highest internal similarity. The eastern Iran has the largest seismic moment rate, while the central Zagros has the lowest one.</p>


Author(s):  
Anastasiya Fomochkina ◽  
Boris Bukchin

We consider the source of an earthquake in an approximation of instant point shift dislocation. Such a source is given by its depth, the focal mechanism determined by three angles (strike, dip, and slip), and the seismic moment characterizing the earthquake intensity. We determine the source depth and focal mechanism by a systematic exploration of 4D parametric space, and seismic moment - by solving the problem of minimization of the misfit between observed and calculated surface wave spectra for every combination of all other parameters. As is well known, the focal mechanism cannot be uniquely determined from the surface wave’s amplitude spectra only. We used P-wave first arrival polarities to select the optimal solution. Ana-lyzing the surface wave spectra at shorter periods, we describe the source in an approximation of the stress glut second moments. Using these moments we determine integral estimates of the geometry, the duration of the seismic source, and rupture propagation. The results of the application of this technique for two Alaska earthquakes that occurred in 2018 (with Mw7.9 in January and with Mw7.1 in November) are presented. The possibility of the fault plane identification, which based on the obtained estimates of the focal mechanisms and second mo-ments, is analyzed for both events. Bilateral model of the source is constructed.


2019 ◽  
Vol 55 (4) ◽  
pp. 600-615
Author(s):  
E. A. Rogozhin ◽  
A. I. Lutikov ◽  
G. Yu. Dontsova ◽  
V. N. Zhukovets

Author(s):  
G.J. Yetirmishli ◽  
S.S. Ismailova ◽  
S.E. Kazimova

The Shamakhi-Ismailli seismogenic zone is known as the zone of the most powerful earthquakes in the Caucasus, which has been characterized by high seismic activity for centuries. Analysis of seismicity over the past 15 years has shown an increase in activity in this region. In October 2012, there was a devastating earthquake with a magnitude of 5.3. It is this earthquake that can be considered a trigger of activity in this region in subsequent years. In view of this, the task of studying seismicity, as well as the stress fields of the lithosphere of the region under study, seems to be especially urgent. The study of the seismicity of the Shamakhi-Ismailli zone provides additional information on the deep tectonic processes occurring in this region, which is important for seismic zoning. Aim. The article analyzes the seismic activity of the Shamakhi-Ismailli region, which began with an earthquake on February 5 at 19 h 19 min, with ml = 4.4, which occurred 11 minutes before the main shock with an intensity of 6 points, which occurred on February 5, 2019 at 19 h 31 m. Methods.The epicentral field was studied, as well as the distribution of foci in depth, solutions of the mechanisms of foci of the main shock and the most noticeable aftershock were constructed and analyzed. A diagram of the main elements of the rupture tectonics of the Shamakhi-Ismailli focal zone has been drawn, on which the mechanisms of the focal points of the lakes of the Ismailli field are plotted. Results. It has been established that the source area is located in the zone of intersection of the Vandam longitudinal fault with the West Caspian and transverse Akhsu strike-slip faults, which additionally characterizes the high seismic activity and deep penetration of the West Caspian right-sided orthogonal fault. Thus, it can be seen that, in terms of epicenters, they tend to the basement faults and the nodes of their intersection, i.e. The main shock that occurred on February 5, 2019, shows the agreement of the second nodal plane NP2 with the right-lateral Akhsu and West-Caspian transverse faults characterized by the type of displacement right-lateral strike-slip. An analysis of the orientation of the compression axes showed the NE-SW orientation, and the extension axes of the NW-SE orientation Шамахи-Исмаиллинская сейсмогенная зона известна как зона самых сильных землетрясений на Кавказе, которая на протяжении веков характеризовалась высокой сейсмической активностью. Анализ сейсмичности за последние 15 лет показал рост активности в этом регионе. В октябре 2012 года произошло разрушительное землетрясение магнитудой 5,3. Именно это землетрясение можно считать триггером активности в этом регионе в последующие годы. В связи с этим задача изучения сейсмичности, а также полей напряжений литосферы изучаемого региона представляется особенно актуальной. Изучение сейсмичности Шамахи-Исмаиллинской зоны дает дополнительную информацию о глубинных тектонических процессах, происходящих в этом регионе, что важно для сейсмического районирования. Цель работы.В статье проанализирована сейсмическая активность Шамахы-Исмаиллинского района, начавшаяся землетрясением 5 февраля в 19 ч 19 мин, с ml = 4,4, произошедшим за 11 минут до главного толчка с интенсивностью 6 баллов, произошедшего 5 февраля 2019 в 19 час 31 мин. Методы работы. Изучены эпицентральное поле, распределение очагов по глубине, построены и проанализированы решения механизмов очагов главного толчка и наиболее заметного афтершока. Составлена схема основных элементов разрывной тектоники Шамахы-Исмаиллинской очаговой зоны, на которой нанесены механизмы очагов озер Исмаиллинского месторождения. Результаты работы. Установлено, что очаговая область расположена в зоне пересечения Вандамского продольного разлома с Западно-Каспийским и поперечным Ахсуйским сдвигами, что дополнительно характеризует высокую сейсмическую активность и глубокое проникновение Западно-Каспийского правостороннего ортогонального разлома. Таким образом, видно, что в плане эпицентров они стремятся к разломам фундамента и узлам их пересечения, т.е. главный толчок, произошедший 5 февраля 2019 г., показывает совпадение второй узловой плоскости NP2 с правосторонним Ахсуйским и Западно-Каспийским поперечным разломом, характеризующимися правосторонним сдвиговым типом смещения. Анализ ориентации осей сжатия показал ориентацию СВ-ЮЗ, а оси растяжения – ориентацию СЗ-ЮВ.


Sign in / Sign up

Export Citation Format

Share Document