Some Ecological Knowledge on Rice Blast and Sheath Blight Occurrence

1984 ◽  
Vol 50 (3) ◽  
pp. 304-306
Author(s):  
Tomio YAMAGUCHI
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Saritha Panthapulakkal Narayanan ◽  
Shiu-Cheung Lung ◽  
Pan Liao ◽  
Clive Lo ◽  
Mee-Len Chye

Abstract The most devastating diseases in rice (Oryza sativa) are sheath blight caused by the fungal necrotroph Rhizoctonia solani, rice blast by hemibiotrophic fungus Magnaporthe oryzae, and leaf blight by bacterial biotroph Xanthomonas oryzae (Xoo). It has been reported that the Class III acyl-CoA-binding proteins (ACBPs) such as those from dicots (Arabidopsis and grapevine) play a role in defence against biotrophic pathogens. Of the six Arabidopsis (Arabidopsis thaliana) ACBPs, AtACBP3 conferred protection in transgenic Arabidopsis against Pseudomonas syringae, but not the necrotrophic fungus, Botrytis cinerea. Similar to Arabidopsis, rice possesses six ACBPs, designated OsACBPs. The aims of this study were to test whether OsACBP5, the homologue of AtACBP3, can confer resistance against representative necrotrophic, hemibiotrophic and biotrophic phytopathogens and to understand the mechanisms in protection. Herein, when OsACBP5 was overexpressed in rice, the OsACBP5-overexpressing (OsACBP5-OE) lines exhibited enhanced disease resistance against representative necrotrophic (R. solani & Cercospora oryzae), hemibiotrophic (M. oryzae & Fusarium graminearum) and biotrophic (Xoo) phytopathogens. Progeny from a cross between OsACBP5-OE9 and the jasmonate (JA)-signalling deficient mutant were more susceptible than the wild type to infection by the necrotroph R. solani. In contrast, progeny from a cross between OsACBP5-OE9 and the salicylic acid (SA)-signalling deficient mutant was more susceptible to infection by the hemibiotroph M. oryzae and biotroph Xoo. Hence, enhanced resistance of OsACBP5-OEs against representative necrotrophs appears to be JA-dependent whilst that to (hemi)biotrophs is SA-mediated.


2000 ◽  
Vol 77 (5) ◽  
pp. 535-540 ◽  
Author(s):  
B. L. Candole ◽  
T. J. Siebenmorgen ◽  
F. N. Lee ◽  
R. D. Cartwright

2006 ◽  
Vol 96 (4) ◽  
pp. 425-431 ◽  
Author(s):  
T. Kobayashi ◽  
K. Ishiguro ◽  
T. Nakajima ◽  
H. Y. Kim ◽  
M. Okada ◽  
...  

The effect of elevated atmospheric CO2 concentration on rice blast and sheath blight disease severity was studied in the field in northern Japan for 3 years. With free-air CO2 enrichment (FACE), rice plants were grown in ambient and elevated (≈200 to 280 μmol mol-1 above ambient) CO2 concentrations, and were artificially inoculated with consist of Magnaporthe oryzae. Rice plants grown in an elevated CO2 concentration were more susceptible to leaf blast than those in ambient CO2 as indicated by the increased number of leaf blast lesions. Plants grown under elevated CO2 concentration had lower leaf silicon content, which may have contributed to the increased susceptibility to leaf blast under elevated CO2 concentrations. In contrast to leaf blast, panicle blast severity was unchanged by the CO2 enrichment under artificial inoculation, whereas it was slightly but significantly higher under elevated CO2 concentrations in a spontaneous rice blast epidemic. For naturally occurring epidemics of the sheath blight development in rice plants, the percentage of diseased plants was higher under elevated as opposed to ambient CO2 concentrations. However, the average height of lesions above the soil surface was similar between the treatments. One hypothesis is that the higher number of tillers observed under elevated CO2 concentrations may have increased the chance for fungal sclerotia to adhere to the leaf sheath at the water surface. Consequently, the potential risks for infection of leaf blast and epidemics of sheath blight would increase in rice grown under elevated CO2 concentration.


2018 ◽  
Vol 55 (1A) ◽  
pp. 54
Author(s):  
Nguyen Van Minh

From 22 rice, soil and water samples collected in the field of Long An and Tien Giang provinces, we isolated and screened 87 strains of bacteria around the root zone and endophytic bacteria. Through testing the ability of plant growth stimulation, the result showed 16 strains were capable of nitrogen fixation, 13 strains were capable of phosphate solubilization, 27 strains were capable of IAA production and 2 strains had all 3 activities. By the dual testing method and the percentage of inhibition method between bacterial and fungal pathogen, LD5 and LS6 strains had the highest antifungal activity against Rhizotocnia sp. CR1 at 94.02 %. TS3 and TĐ13 strains had the highest antifungal activity against Magnaporthe sp. BP3 at 81.74 ± 0.88 % and 80 ± 0.60 %, respectively. Furthermore, there were 6 strains inhibiting both Rhizotocnia sp. CR1 and Magnaporthe sp. BP3 (LĐ5, LS4, LS6, LN1, LN6, TS3). The strains were identified by biochemical methods. The results showed that LD5, LS6 and TS3 were 70.37 % similar to Bacillus thurigiensis, TD13 strain was 70.37 % similar to Bacillus pantothenticus, TD9 strain was 72.72 % similar to Azotobacter vinelandii and TD6 strain was 70.37 % similar to Bacillus subtilis. Regarding the test of activity to stimulate growth in net house model, combination of 4-strain (TD6, TD9, TD13, TS3) had the effect of increasing the length of roots, trunk and weight of rice compared with control treatment. For evaluation of biocontrol of fungal pathogen in net house model, the abilities to control sheath blight in N-2C1 and N-LĐ5 treatment were the highest (40.59 % and 39.06 %, respectively). The ability to control rice blast in N-2C2 treatment was the highest (41.26 %). The ability to biocontrol both sheath blight and rice blast in N-4C treatment was 37.89 %.


2009 ◽  
Vol 3 (3) ◽  
pp. 231-239 ◽  
Author(s):  
Yulin Jia ◽  
Guangjie Liu ◽  
Stefano Costanzo ◽  
Seonghee Lee ◽  
Yuntao Dai

2013 ◽  
Vol 43 ◽  
pp. 89-93 ◽  
Author(s):  
Junhao Qin ◽  
Hongzhi He ◽  
Shiming Luo ◽  
Huashou Li

2021 ◽  
Author(s):  
Xin-Gen Zhou ◽  
Dongyan Zhang ◽  
Fenfang Lin

Unmanned aerial vehicle (UAV) remote sensing is a new alternative to traditional diagnosis and detection of rice diseases by visual symptoms, providing quick, accurate and large coverage disease detection. UAV remote sensing offers an unprecedented spectral, spatial, and temporal resolution that can distinguish diseased plant tissue from healthy tissue based on the characteristics of disease symptoms. Research has been conducted on using RGB sensor, multispectral sensor, and hyperspectral sensor for successful detection and quantification of sheath blight (Rhizoctonia solani), using multispectral sensor to accurately detect narrow brown leaf spot (Cercospora janseana), and using infrared thermal sensor for detecting the occurrence of rice blast (Magnaporthe oryzae). UAV can also be used for aerial application, and UAV spraying has become a new means for control of rice sheath blight and other crop diseases in many countries, especially China and Japan. UAV spraying can operate at low altitudes and various speeds, making it suitable for situations where arial and ground applications are unavailable or infeasible and where precision applications are needed. Along with advances in digitalization and artificial intelligence for precision application across fertilizer, pest and crop management needs, this UAV technology will become a core tool in a farmer’s precision equipment mix in the future.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1491
Author(s):  
Ilakiya Sharanee Kumar ◽  
Kalaivani Nadarajah

Rice blast, sheath blight and bacterial leaf blight are major rice diseases found worldwide. The development of resistant cultivars is generally perceived as the most effective way to combat these diseases. Plant disease resistance is a polygenic trait where a combinatorial effect of major and minor genes affects this trait. To locate the source of this trait, various quantitative trait loci (QTL) mapping studies have been performed in the past two decades. However, investigating the congruency between the reported QTL is a daunting task due to the heterogeneity amongst the QTLs studied. Hence, the aim of our study is to integrate the reported QTLs for resistance against rice blast, sheath blight and bacterial leaf blight and objectively analyze and consolidate the location of QTL clusters in the chromosomes, reducing the QTL intervals and thus identifying candidate genes within the selected meta-QTL. A total of twenty-seven studies for resistance QTLs to rice blast (8), sheath blight (15) and bacterial leaf blight (4) was compiled for QTL projection and analyses. Cumulatively, 333 QTLs associated with rice blast (114), sheath blight (151) and bacterial leaf blight (68) resistance were compiled, where 303 QTLs could be projected onto a consensus map saturated with 7633 loci. Meta-QTL analysis on 294 QTLs yielded 48 meta-QTLs, where QTLs with membership probability lower than 60% were excluded, reducing the number of QTLs within the meta-QTL to 274. Further, three meta-QTL regions (MQTL2.5, MQTL8.1 and MQTL9.1) were selected for functional analysis on the basis that MQTL2.5 harbors the highest number of QTLs; meanwhile, MQTL8.1 and MQTL9.1 have QTLs associated with all three diseases mentioned above. The functional analysis allows for determination of enriched gene ontology and resistance gene analogs (RGAs) and other defense-related genes. To summarize, MQTL2.5, MQTL8.1 and MQTL9.1 have a considerable number of R-genes that account for 10.21%, 4.08% and 6.42% of the total genes found in these meta-QTLs, respectively. Defense genes constitute around 3.70%, 8.16% and 6.42% of the total number of genes in MQTL2.5, MQTL8.1 and MQTL9.1, respectively. This frequency is higher than the total frequency of defense genes in the rice genome, which is 0.0096% (167 defense genes/17,272 total genes). The integration of the QTLs facilitates the identification of QTL hotspots for rice blast, sheath blight and bacterial blight resistance with reduced intervals, which helps to reduce linkage drag in breeding. The candidate genes within the promising regions could be utilized for improvement through genetical engineering.


Sign in / Sign up

Export Citation Format

Share Document