scholarly journals In Vitro Growth Inhibition of Plant Pathogenic Fungi, Botrytis spp., by Escherichia coli Transformed with a Chitinolytic Enzyme Gene from a Marine Bacterium, Alteromonas sp. Strain 79401.

1996 ◽  
Vol 62 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Kazuyuki HIRAYAE ◽  
Akiko HIRATA ◽  
Katsumi AKUTSU ◽  
Saburo HARA ◽  
Ilkka HAVUKKALA ◽  
...  
1999 ◽  
Vol 65 (3) ◽  
pp. 1320-1324 ◽  
Author(s):  
Zhi-Yuan Chen ◽  
Robert L. Brown ◽  
Alan R. Lax ◽  
Thomas E. Cleveland ◽  
John S. Russin

ABSTRACT The cDNA of a 14-kDa trypsin inhibitor (TI) from corn was subcloned into an Escherichia coli overexpression vector. The overexpressed TI was purified based on its insolubility in urea and then refolded into the active form in vitro. This recombinant TI inhibited both conidium germination and hyphal growth of all nine plant pathogenic fungi studied, including Aspergillus flavus,Aspergillus parasiticus, and Fusarium moniliforme. The calculated 50% inhibitory concentration of TI for conidium germination ranged from 70 to more than 300 μg/ml, and that for fungal growth ranged from 33 to 124 μg/ml depending on the fungal species. It also inhibited A. flavus and F. moniliforme simultaneously when they were tested together. The results suggest that the corn 14-kDa TI may function in host resistance against a variety of fungal pathogens of crops.


2015 ◽  
Vol 40 (2) ◽  
pp. 148-160 ◽  
Author(s):  
Moonjit Das ◽  
Himaja Malipeddi ◽  
N. Arunai Nambiraj ◽  
Reshma Rajan

Author(s):  
Jennyfer Mora Cristancho ◽  
Sven Zea ◽  
Diego L. Gil Agudelo

Surfaces submerged in the sea are densely colonized by bacteria, and inter-specic interactions such as growth inhibition are important determinants of the development of bacterial communities, as well as of later phases of macrofouling. To determine the potential interactions among biolm bacteria from sponges we carried out in vitro growth inhibition tests between bacterial strains isolated from surfaces with various degrees of macrofouling, from the sponges Aplysina insularis (clean), Aplysina lacunosa (fouled), and from the calcareous surface of the bivalve mollusk Donax sp. The total percentage of antagonistic interactions among these strains was 64 %; strains isolated from clean surfaces inhibited the growth of strains from well-colonized surfaces in a 1:1 ratio. Strains from clean surfaces had a higher frequency of antagonistic interactions. We propose bacterial antagonistic interaction as a possible mechanism of population growth regulation and, consequently, of the development of subsequent phases of macrofouling.


2001 ◽  
Vol 139 (2) ◽  
pp. 243-249 ◽  
Author(s):  
D EKSTEEN ◽  
J C PRETORIUS ◽  
T D NIEUWOUDT ◽  
P C ZIETSMAN

2020 ◽  
Vol 21 (21) ◽  
pp. 7912 ◽  
Author(s):  
Tatyana Odintsova ◽  
Larisa Shcherbakova ◽  
Marina Slezina ◽  
Tatyana Pasechnik ◽  
Bakhyt Kartabaeva ◽  
...  

Hevein-like antimicrobial peptides (AMPs) comprise a family of plant AMPs with antifungal activity, which harbor a chitin-binding site involved in interactions with chitin of fungal cell walls. However, the mode of action of hevein-like AMPs remains poorly understood. This work reports the structure–function relationship in WAMPs—hevein-like AMPs found in wheat (Triticum kiharae Dorof. et Migush.) and later in other Poaceae species. The effect of WAMP homologues differing at position 34 and the antifungal activity of peptide fragments derived from the central, N- and C-terminal regions of one of the WAMPs, namely WAMP-2, on spore germination of different plant pathogenic fungi were studied. Additionally, the ability of WAMP-2-derived peptides to potentiate the fungicidal effect of tebuconazole, one of the triazole fungicides, towards five cereal-damaging fungi was explored in vitro by co-application of WAMP-2 fragments with Folicur® EC 250 (25% tebuconazole). The antifungal activity of WAMP homologues and WAMP-2-derived peptides varied depending on the fungus, suggesting multiple modes of action for WAMPs against diverse pathogens. Folicur® combined with the WAMP-2 fragments inhibited the spore germination at a much greater level than the fungicide alone, and the type of interactions was either synergistic or additive, depending on the target fungus and concentration combinations of the compounds. The combinations, which resulted in synergism and drastically enhanced the sensitivity to tebuconazole, were revealed for all five fungi by a checkerboard assay. The ability to synergistically interact with a fungicide and exacerbate the sensitivity of plant pathogenic fungi to a commercial antifungal agent is a novel and previously uninvestigated property of hevein-like AMPs.


2020 ◽  
Vol 119 (6) ◽  
pp. 1879-1887
Author(s):  
Minelly Azevedo da Silva ◽  
Márcia Paranho Veloso ◽  
Kassius de Souza Reis ◽  
Guilherme de Matos Passarini ◽  
Ana Paula de Azevedo dos Santos ◽  
...  

2014 ◽  
Vol 53 (4) ◽  
pp. 438-440
Author(s):  
Liliana Gallez ◽  
Mirta Kiehr ◽  
Leticia Fernández ◽  
Rolf Delhey ◽  
Débora Stikar

Plant Disease ◽  
2009 ◽  
Vol 93 (10) ◽  
pp. 1037-1043 ◽  
Author(s):  
Young-Ki Jo ◽  
Byung H. Kim ◽  
Geunhwa Jung

Silver in ionic or nanoparticle forms has a high antimicrobial activity and is therefore widely used for various sterilization purposes including materials of medical devices and water sanitization. There have been relatively few studies on the applicability of silver to control plant diseases. Various forms of silver ions and nanoparticles were tested in the current study to examine the antifungal activity on two plant-pathogenic fungi, Bipolaris sorokiniana and Magnaporthe grisea. In vitro petri dish assays indicated that silver ions and nanoparticles had a significant effect on the colony formation of these two pathogens. Effective concentrations of the silver compounds inhibiting colony formation by 50% (EC50) were higher for B. sorokiniana than for M. grisea. The inhibitory effect on colony formation significantly diminished after silver cations were neutralized with chloride ions. Growth chamber inoculation assays further confirmed that both ionic and nanoparticle silver significantly reduced these two fungal diseases on perennial ryegrass (Lolium perenne). Particularly, silver ions and nanoparticles effectively reduced disease severity with an application at 3 h before spore inoculation, but their efficacy significantly diminished when applied at 24 h after inoculation. The in vitro and in planta evaluations of silver indicated that both silver ions and nanoparticles influence colony formation of spores and disease progress of plant-pathogenic fungi. In planta efficacy of silver ions and nanoparticles is much greater with preventative application, which may promote the direct contact of silver with spores and germ tubes, and inhibit their viability.


Sign in / Sign up

Export Citation Format

Share Document