Compartmentalized and contrasted response of ectomycorrhizal and soil fungal communities of Scots pine forests along elevation gradients in France and Spain

2015 ◽  
Vol 17 (8) ◽  
pp. 3009-3024 ◽  
Author(s):  
Ana Rincón ◽  
Blanca Santamaría-Pérez ◽  
Sonia G. Rabasa ◽  
Aurore Coince ◽  
Benoit Marçais ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Beat Wermelinger ◽  
Andreas Rigling ◽  
Doris Schneider Mathis ◽  
Marc Kenis ◽  
Martin M. Gossner

Increased tree mortality has become a widespread phenomenon and is largely attributed to climate change. Little field research has addressed the complex interactions between trees, herbivores, and their natural enemies as affected by temperature. We recorded the densities of bark insects and their natural enemies emerging from felled trees in Scots pine forests at 17 study sites along 6 elevation gradients encompassing different temperature ranges in 3 regions in Switzerland and Italy. We additionally measured tree resin defense at different elevations. The density of aggressive bark beetles decreased with increasing temperatures while that of non-aggressive species did not respond to temperature. Contrasting patterns were also found for natural enemies, with the densities of most predatory taxa decreasing with increasing temperature whereas densities of parasitoids increased. Consequently, bark beetle mortality by predators decreased and that by parasitoids increased with temperature. Exudation of resin increased with temperature. As the number of resin ducts did not change with temperature, this is assumed a physical effect of reduced viscosity. Despite lower densities of aggressive bark beetles and improved tree resin flow under higher temperatures, the currently experienced drought-induced reduction in tree vigor is likely to increase tree mortality under the ongoing climate warming.


2018 ◽  
Vol 169 (5) ◽  
pp. 260-268 ◽  
Author(s):  
Thomas Wohlgemuth ◽  
Violette Doublet ◽  
Cynthia Nussbaumer ◽  
Linda Feichtinger ◽  
Andreas Rigling

Vegetation shift in Scots pine forests in the Valais accelerated by large disturbances In the past dozen years, several studies have concluded a vegetation shift from Scots pine to oak (pubescent and sessile) forests in the low elevated zones of the Valais. It is, however, not fully clear in which way such a vegetation shift actually occurs and on which processes such a shift would be based. Two studies, one on the tree demography in the intact Pfynwald and the other on the tree regeneration on the large Leuk forest fire patch, serve to discuss different aspects of the shift from Scots pine to oak. The forest stands of Pfynwald consist of 67% Scots pines and 14% oaks. Regenerating trees are 2–3.5 times more frequent in small gaps than under canopy. In gaps of the Upper Pfynwald, seedlings and saplings of Scots pine are three times more abundant than oaks, while both species regenerate in similar quantities under canopy. In the Lower Pfynwald, young oaks – especially seedlings – are more frequent than Scots pines. A different process is going on at the lower part in the Leuk forest fire patch where Scots pines prevailed before the burn of 2003. While Scots pines regenerate exclusively close to the edge of the intact forest, oaks not only resprout from trunk but also profit from unlimited spreading of their seeds by the Eurasian jay. Regeneration from seeds are hence observed in the whole studied area, independent of the proximity of seed trees. After the large fire disturbance, a mixed forests with a high share of oaks is establishing, which translates to a rapid vegetation shift. The two trajectories are discussed in the light of climate change.


2021 ◽  
Vol 771 ◽  
pp. 144834
Author(s):  
Michał H. Węgrzyn ◽  
Patrycja Fałowska ◽  
Joanna Kołodziejczyk ◽  
Karima Alzayany ◽  
Piotr Wężyk ◽  
...  

2004 ◽  
Vol 155 (6) ◽  
pp. 178-190 ◽  
Author(s):  
Andreas Rigling ◽  
Pascale Weber ◽  
Paolo Cherubini ◽  
Matthias Dobbertin

The aim of this paper is to demonstrate the use of dendroecological methods to analyse the various processes involved in forest dynamics. Using dendroecological case studies of the Scots pine forests of Valais (Switzerland) as an example we discuss the most relevant processes of forest dynamics and their consequences on stand structures and mortality rates. We focus on the development history of these Scots pine forests under human impact and on the impact of biotic and abiotic factors on tree growth. Most of today's extended Scots pine forests (< 1500 m a.s.l.)must be interpreted as part of an ongoing natural succession under heavy human influence. In time, without management or natural disturbances, most of these pine forests will develop into broadleaved forests (lower altitudes) or spruce-firforests(higher altitudes).


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 847 ◽  
Author(s):  
Hanna Szmidla ◽  
Miłosz Tkaczyk ◽  
Radosław Plewa ◽  
Grzegorz Tarwacki ◽  
Zbigniew Sierota

Common mistletoe is increasingly mentioned as contributing not only to the decline of deciduous trees at roadside and in city parks, but to conifers in stands. The presence of Viscum in fir stands has been known for many years, but since 2015 has also been the cause of damage to pine. In 2019, mistletoe was observed on 77.5 thousand hectares of Scots pine stands in southern and central Poland. Drought resulting from global climate change is implicated as an important factor conducive to weakening trees and making them more susceptible to the spread of mistletoe and other pests. This paper presents an overview of the latest information on the development of this semi-parasitic plant in Poland, its impact on tree breeding traits and raw material losses, as well as current options for its prevention and eradication.


Sign in / Sign up

Export Citation Format

Share Document