scholarly journals Neural systems underlying approach and avoidance in anxiety disorders

2010 ◽  
Vol 12 (4) ◽  
pp. 517-531 ◽  

Approach-avoidance conflict is an important psychological concept that has been used extensively to better understand cognition and emotion. This review focuses on neural systems involved in approach, avoidance, and conflict decision making, and how these systems overlap with implicated neural substrates of anxiety disorders. In particular, the role of amygdala, insula, ventral striatal, and prefrontal regions are discussed with respect to approach and avoidance behaviors. Three specific hypotheses underlying the dysfunction in anxiety disorders are proposed, including: (i) over-representation of avoidance valuation related to limbic overactivation; (ii) under- or over-representation of approach valuation related to attenuated or exaggerated striatal activation respectively; and (iii) insufficient integration and arbitration of approach and avoidance valuations related to attenuated orbitofrontal cortex activation. These dysfunctions can be examined experimentally using versions of existing decision-making paradigms, but may also require new translational and innovative approaches to probe approach-avoidance conflict and related neural systems in anxiety disorders.

2019 ◽  
Author(s):  
Bhargav Teja Nallapu ◽  
Frédéric Alexandre

AbstractIn the context of flexible and adaptive animal behavior, the orbitofrontal cortex (OFC) is found to be one of the crucial regions in the prefrontal cortex (PFC) influencing the downstream processes of decision-making and learning in the sub-cortical regions. Although OFC has been implicated to be important in a variety of related behavioral processes, the exact mechanisms are unclear, through which the OFC encodes or processes information related to decision-making and learning. Here, we propose a systems-level view of the OFC, positioning it at the nexus of sub-cortical systems and other prefrontal regions. Particularly we focus on one of the most recent implications of neuroscientific evidences regarding the OFC - possible functional dissociation between two of its sub-regions : lateral and medial. We present a system-level computational model of decision-making and learning involving the two sub-regions taking into account their individual roles as commonly implicated in neuroscientific studies. We emphasize on the role of the interactions between the sub-regions within the OFC as well as the role of other sub-cortical structures which form a network with them. We leverage well-known computational architecture of thalamo-cortical basal ganglia loops, accounting for recent experimental findings on monkeys with lateral and medial OFC lesions, performing a 3-arm bandit task. First we replicate the seemingly dissociate effects of lesions to lateral and medial OFC during decision-making as a function of value-difference of the presented options. Further we demonstrate and argue that such an effect is not necessarily due to the dissociate roles of both the subregions, but rather a result of complex temporal dynamics between the interacting networks in which they are involved.Author summaryWe first highlight the role of the Orbitofrontal Cortex (OFC) in value-based decision making and goal-directed behavior in primates. We establish the position of OFC at the intersection of cortical mechanisms and thalamo-basal ganglial circuits. In order to understand possible mechanisms through which the OFC exerts emotional control over behavior, among several other possibilities, we consider the case of dissociate roles of two of its topographical subregions - lateral and medial parts of OFC. We gather predominant roles of each of these sub-regions as suggested by numerous experimental evidences in the form of a system-level computational model that is based on existing neuronal architectures. We argue that besides possible dissociation, there could be possible interaction of these sub-regions within themselves and through other sub-cortical structures, in distinct mechanisms of choice and learning. The computational framework described accounts for experimental data and can be extended to more comprehensive detail of representations required to understand the processes of decision-making, learning and the role of OFC and subsequently the regions of prefrontal cortex in general.


2017 ◽  
Vol 27 (4) ◽  
pp. 501-523 ◽  
Author(s):  
David Tuckett ◽  
Milena Nikolic

We propose conviction narrative theory (CNT) to broaden decision-making theory in order to better understand and analyse how subjectively means–end rational actors cope in contexts in which the traditional assumptions in decision-making models fail to hold. Conviction narratives enable actors to draw on their beliefs, causal models, and rules of thumb to identify opportunities worth acting on, to simulate the future outcome of their actions, and to feel sufficiently convinced to act. The framework focuses on how narrative and emotion combine to allow actors to deliberate and to select actions that they think will produce the outcomes they desire. It specifies connections between particular emotions and deliberative thought, hypothesising that approach and avoidance emotions evoked during narrative simulation play a crucial role. Two mental states, Divided and Integrated, in which narratives can be formed or updated, are introduced and used to explain some familiar problems that traditional models cannot.


2010 ◽  
Vol 22 (10) ◽  
pp. 2357-2368 ◽  
Author(s):  
Pranjal H. Mehta ◽  
Jennifer Beer

Testosterone plays a role in aggressive behavior, but the mechanisms remain unclear. The present study tested the hypothesis that testosterone influences aggression through the OFC, a region implicated in self-regulation and impulse control. In a decision-making paradigm in which people chose between aggression and monetary reward (the ultimatum game), testosterone was associated with increased aggression following social provocation (rejecting unfair offers). The effect of testosterone on aggression was explained by reduced activity in the medial OFC. The findings suggest that testosterone increases the propensity toward aggression because of reduced activation of the neural circuitry of impulse control and self-regulation.


2008 ◽  
Vol 20 (3) ◽  
pp. 745-774 ◽  
Author(s):  
Theodore P. Beauchaine ◽  
Emily Neuhaus ◽  
Sharon L. Brenner ◽  
Lisa Gatzke-Kopp

AbstractMost contemporary accounts of psychopathology acknowledge the importance of both biological and environmental influences on behavior. In developmental psychopathology, multiple etiological mechanisms for psychiatric disturbance are well recognized, including those operating at genetic, neurobiological, and environmental levels of analysis. However, neuroscientific principles are rarely considered in current approaches to prevention or intervention. In this article, we explain why a deeper understanding of the genetic and neural substrates of behavior is essential for the next generation of preventive interventions, and we outline 10 specific reasons why considering biological processes can improve treatment efficacy. Among these, we discuss (a) the role of biomarkers and endophenotypes in identifying those most in need of prevention; (b) implications for treatment of genetic and neural mechanisms of homotypic comorbidity, heterotypic comorbidity, and heterotypic continuity; (c) ways in which biological vulnerabilities moderate the effects of environmental experience; (d) situations in which Biology × Environment interactions account for more variance in key outcomes than main effects; and (e) sensitivity of neural systems, via epigenesis, programming, and neural plasticity, to environmental moderation across the life span. For each of the 10 reasons outlined we present an example from current literature and discuss critical implications for prevention.


2008 ◽  
Vol 19 (11) ◽  
pp. 1131-1139 ◽  
Author(s):  
Jay J. Van Bavel ◽  
Dominic J. Packer ◽  
William A. Cunningham

Classic minimal-group studies found that people arbitrarily assigned to a novel group quickly display a range of perceptual, affective, and behavioral in-group biases. We randomly assigned participants to a mixed-race team and used functional magnetic resonance imaging to identify brain regions involved in processing novel in-group and out-group members independently of preexisting attitudes, stereotypes, or familiarity. Whereas previous research on intergroup perception found amygdala activity—typically interpreted as negativity—in response to stigmatized social groups, we found greater activity in the amygdala, fusiform gyri, orbitofrontal cortex, and dorsal striatum when participants viewed novel in-group faces than when they viewed novel out-group faces. Moreover, activity in orbitofrontal cortex mediated the in-group bias in self-reported liking for the faces. These in-group biases in neural activity were not moderated by race or by whether participants explicitly attended to team membership or race, a finding suggesting that they may occur automatically. This study helps clarify the role of neural substrates involved in perceptual and affective in-group biases.


2021 ◽  
Vol 15 ◽  
Author(s):  
Neil M. Dundon ◽  
Allison D. Shapiro ◽  
Viktoriya Babenko ◽  
Gold N. Okafor ◽  
Scott T. Grafton

Anxiety is characterized by low confidence in daily decisions, coupled with high levels of phenomenological stress. Ventromedial prefrontal cortex (vmPFC) plays an integral role in maladaptive anxious behaviors via decreased sensitivity to threatening vs. non-threatening stimuli (fear generalization). vmPFC is also a key node in approach-avoidance decision making requiring two-dimensional integration of rewards and costs. More recently, vmPFC has been implicated as a key cortical input to the sympathetic branch of the autonomic nervous system. However, little is known about the role of this brain region in mediating rapid stress responses elicited by changes in confidence during decision making. We used an approach-avoidance task to examine the relationship between sympathetically mediated cardiac stress responses, vmPFC activity and choice behavior over long and short time-scales. To do this, we collected concurrent fMRI, EKG and impedance cardiography recordings of sympathetic drive while participants made approach-avoidance decisions about monetary rewards paired with painful electric shock stimuli. We observe first that increased sympathetic drive (shorter pre-ejection period) in states lasting minutes are associated with choices involving reduced decision ambivalence. Thus, on this slow time scale, sympathetic drive serves as a proxy for “mobilization” whereby participants are more likely to show consistent value-action mapping. In parallel, imaging analyses reveal that on shorter time scales (estimated with a trial-to-trial GLM), increased vmPFC activity, particularly during low-ambivalence decisions, is associated with decreased sympathetic state. Our findings support a role of sympathetic drive in resolving decision ambivalence across long time horizons and suggest a potential role of vmPFC in modulating this response on a moment-to-moment basis.


2021 ◽  
Author(s):  
Rujing Zha ◽  
Peng Li ◽  
Ying Li ◽  
Nan Li ◽  
Meijun Gao ◽  
...  

Abstract A good-based model proposes that the orbitofrontal cortex (OFC) represents binary choice outcome, i.e., the chosen good. Previous studies have found that the OFC represents the binary choice outcome in decision-making tasks involving commodity type, cost, risk, and delay. Real-life decisions are often complex and involve uncertainty, rewards, and penalties; however, whether the OFC represents binary choice outcomes in a such decision-making situation, e.g., Iowa gambling task (IGT), remains unclear. Here, we propose that the OFC represents binary choice outcome, i.e., advantageous choice versus disadvantageous choice, in the IGT. We propose two hypotheses: first, the activity pattern in the human OFC represents an advantageous choice; and second, choice induces an OFC-related functional network. Using functional magnetic resonance imaging and advanced machine learning tools, we found that the OFC represented an advantageous choice in the IGT. The OFC representation of advantageous choice was related to decision-making performance. Choice modulated the functional connectivity between the OFC and the superior medial gyrus. In conclusion, the OFC represents an advantageous choice during the IGT. In the framework of a good-based model, the results extend the role of the OFC to complex decision-making when making a binary choice.


Sign in / Sign up

Export Citation Format

Share Document