scholarly journals Spatial distribution of net surface accumulation on the Antarctic ice sheet

2000 ◽  
Vol 31 ◽  
pp. 171-178 ◽  
Author(s):  
M. B. Glovinetto ◽  
H. J. Zwally

AbstractAn isopleth map showing the spatial distribution of net mass accumulation at the surface on the Antarctic ice sheet, excluding Graham Land, the Larsen Ice Shelf and eastern Palmer Land, is produced based on field data from approximately 2000 sites. A database of accumulation values for 5365 gridpoint locations with 50 km spacing is interpolated from the isopleth map, giving a bulk accumulation of 2151 Gt a–1 and a mean of 159 kg m–2 a–1 for an area of 13.53 × 106 km2. Following the implementation of deflation and ablation adjustments applicable to sectors of the coastal zone, the accumulation values are reduced to 2020 Gt a–1 and 149 kg m–2 a–1. The new accumulation distribution is compared with another recent distribution, which was based on essentially the same field data using different analysis and interpolation criteria. Differences between the distributions are assessed using residuals for the 50 km gridpoint locations and by comparing average accumulation values for 24 drainage systems. The assessment based on residuals indicates that the two distributions show patterns of accumulation that are coherent at the continental scale, a shared attribute underscored by a small mean residual value of 6 kg m–2 a–1 (a difference of <4%). However, the regional assessment based on average accumulation values for the drainage systems shows differences that are larger than the assessment error (>22%) for six systems that collectively comprise approximately 4/10 of the ice-sheet area and 3/10 of the accumulation.

2021 ◽  
Vol 15 (12) ◽  
pp. 5639-5658
Author(s):  
Zhongyang Hu ◽  
Peter Kuipers Munneke ◽  
Stef Lhermitte ◽  
Maaike Izeboud ◽  
Michiel van den Broeke

Abstract. Accurately estimating the surface melt volume of the Antarctic Ice Sheet is challenging and has hitherto relied on climate modeling or observations from satellite remote sensing. Each of these methods has its limitations, especially in regions with high surface melt. This study aims to demonstrate the potential of improving surface melt simulations with a regional climate model by deploying a deep learning model. A deep-learning-based framework has been developed to correct surface melt from the regional atmospheric climate model version 2.3p2 (RACMO2), using meteorological observations from automatic weather stations (AWSs) and surface albedo from satellite imagery. The framework includes three steps: (1) training a deep multilayer perceptron (MLP) model using AWS observations, (2) correcting Moderate Resolution Imaging Spectroradiometer (MODIS) albedo observations, and (3) using these two to correct the RACMO2 surface melt simulations. Using observations from three AWSs at the Larsen B and C ice shelves, Antarctica, cross-validation shows a high accuracy (root-mean-square error of 0.95 mm w.e. d−1, mean absolute error of 0.42 mm w.e. d−1, and a coefficient of determination of 0.95). Moreover, the deep MLP model outperforms conventional machine learning models and a shallow MLP model. When applying the trained deep MLP model over the entire Larsen Ice Shelf, the resulting corrected RACMO2 surface melt shows a better correlation with the AWS observations for two out of three AWSs. However, for one location (AWS 18), the deep MLP model does not show improved agreement with AWS observations; this is likely because surface melt is largely driven by factors (e.g., air temperature, topography, katabatic wind) other than albedo within the corresponding coarse-resolution model pixels. Our study demonstrates the opportunity to improve surface melt simulations using deep learning combined with satellite albedo observations. However, more work is required to refine the method, especially for complicated and heterogeneous terrains.


2021 ◽  
Author(s):  
◽  
James Stutz II

<p>The Antarctic Ice Sheet is a significant component of the Earth System, modulating Earth‘s sea level and climate. Present day and projected ice mass losses from Antarctica are of paramount concern to human populations in low-lying communities around the world. Ocean freshening from future ice discharge events also has the potential to destabilise global climate patterns. Over 40 years of satellite observations have tracked changes in ice mass, extent and thickness in Antarctica. However, ice sheets respond on timescales that range from annual to millennial, and a geologic perspective is needed to fully understand ice sheet response on timescales longer than a few decades. This research seeks to provide an improved understanding of Antarcticas future by constraining its past. I focus on one of the largest outlet glaciers in Antarctica, the David Glacier/Drygalski Ice Tongue system which drains the East Antarctic Ice Sheet, dissects the Transantarctic Mountains and discharges into the Ross Sea. I seek to answer two questions; (1) what is the timing and nature of David Glacier thinning since the Last Glacial Maximum approximately 20,000 years ago, and (2) what physical processes were responsible for the observed thinning? I answer these questions by mapping the terrestrial and marine geomorphology along the former margins and seaward extension of David Glacier, and by using surface exposure dating of bedrock and glacial erratics to constrain the timing of glacier thinning. I then use a numerical flowline model to identify the processes that drove glacier thinning and retreat. Surface exposure ages from bedrock and glacial erratics at field sites both upstream and downstream of the modern grounding line reveal that David Glacier thinned for two millennia during the mid-Holocene. Near the coast, this thinning occurred at ∼6.5 kya at a rapid rate of up to 2 m/yr. Upstream from the grounding line, the thinning was more gradual but occurred simultaneously with thinning downstream. The timing of glacial thinning at David Glacier correlates with thinning events at other glaciers in the region and is consistent with offshore marine geological records. To identify the mechanisms responsible for the observed thinning of David Glacier, I conduct numerical model sensitivity experiments along a 1,600 km flowline, extending from the ice sheet interior to the continental shelf edge in the western Ross Sea. Offshore, the glacier flowline follows the Drygalski Trough, where it crosses numerous grounding zone wedges of various sizes. The flowline and prescribed ice shelf width is guided by the orientation and distribution of mega-scale glacial lineations as well as overall sea floor bathymetry. I explore the response of a stable, expanded David Glacier to the effects of increasing sub-ice shelf melt rates, and decreasing lateral buttressing which may have occurred as grounded ice in the Ross Sea migrated southward of the David Glacier. These forcings were also combined to explore potential feedbacks associated with Marine Ice Sheet Instability. This modelling demonstrates that David Glacier likely underwent rapid thinning over a period of ∼500 years as the grounding line retreated to a prominent sill at the mouth of David Fjord. After a period of ∼ 5 ka of stability, a second period of grounding line retreat in the model leads to the glacier reaching its modern configuration. This simulated two-phase grounding line retreat compares well with onshore geologically constrained thinning events at two sites (Mt. Kring and Hughes Bluff), both in terms of timing and rates of past glacier thinning. This retreat pattern can be forced by either increased ice shelf melting or reduced buttressing, but when combined, lower melt rates and less lateral buttressing is required to match onshore geologic constraints. Together, the findings in this thesis provide new data to constrain the past behaviour of a significant portion of the East Antarctic Ice Sheet and critical insights into the mechanisms that control ice sheet thinning and retreat. Incorporation of these constraints and improved understanding of the underlying mechanisms driving glacier thinning and grounding line retreat will ultimately improve continental scale ice sheet models which are used to project the future behaviour of the Antarctic Ice Sheet and its influence on global sea level.</p>


2021 ◽  
Author(s):  
◽  
James Stutz II

<p>The Antarctic Ice Sheet is a significant component of the Earth System, modulating Earth‘s sea level and climate. Present day and projected ice mass losses from Antarctica are of paramount concern to human populations in low-lying communities around the world. Ocean freshening from future ice discharge events also has the potential to destabilise global climate patterns. Over 40 years of satellite observations have tracked changes in ice mass, extent and thickness in Antarctica. However, ice sheets respond on timescales that range from annual to millennial, and a geologic perspective is needed to fully understand ice sheet response on timescales longer than a few decades. This research seeks to provide an improved understanding of Antarcticas future by constraining its past. I focus on one of the largest outlet glaciers in Antarctica, the David Glacier/Drygalski Ice Tongue system which drains the East Antarctic Ice Sheet, dissects the Transantarctic Mountains and discharges into the Ross Sea. I seek to answer two questions; (1) what is the timing and nature of David Glacier thinning since the Last Glacial Maximum approximately 20,000 years ago, and (2) what physical processes were responsible for the observed thinning? I answer these questions by mapping the terrestrial and marine geomorphology along the former margins and seaward extension of David Glacier, and by using surface exposure dating of bedrock and glacial erratics to constrain the timing of glacier thinning. I then use a numerical flowline model to identify the processes that drove glacier thinning and retreat. Surface exposure ages from bedrock and glacial erratics at field sites both upstream and downstream of the modern grounding line reveal that David Glacier thinned for two millennia during the mid-Holocene. Near the coast, this thinning occurred at ∼6.5 kya at a rapid rate of up to 2 m/yr. Upstream from the grounding line, the thinning was more gradual but occurred simultaneously with thinning downstream. The timing of glacial thinning at David Glacier correlates with thinning events at other glaciers in the region and is consistent with offshore marine geological records. To identify the mechanisms responsible for the observed thinning of David Glacier, I conduct numerical model sensitivity experiments along a 1,600 km flowline, extending from the ice sheet interior to the continental shelf edge in the western Ross Sea. Offshore, the glacier flowline follows the Drygalski Trough, where it crosses numerous grounding zone wedges of various sizes. The flowline and prescribed ice shelf width is guided by the orientation and distribution of mega-scale glacial lineations as well as overall sea floor bathymetry. I explore the response of a stable, expanded David Glacier to the effects of increasing sub-ice shelf melt rates, and decreasing lateral buttressing which may have occurred as grounded ice in the Ross Sea migrated southward of the David Glacier. These forcings were also combined to explore potential feedbacks associated with Marine Ice Sheet Instability. This modelling demonstrates that David Glacier likely underwent rapid thinning over a period of ∼500 years as the grounding line retreated to a prominent sill at the mouth of David Fjord. After a period of ∼ 5 ka of stability, a second period of grounding line retreat in the model leads to the glacier reaching its modern configuration. This simulated two-phase grounding line retreat compares well with onshore geologically constrained thinning events at two sites (Mt. Kring and Hughes Bluff), both in terms of timing and rates of past glacier thinning. This retreat pattern can be forced by either increased ice shelf melting or reduced buttressing, but when combined, lower melt rates and less lateral buttressing is required to match onshore geologic constraints. Together, the findings in this thesis provide new data to constrain the past behaviour of a significant portion of the East Antarctic Ice Sheet and critical insights into the mechanisms that control ice sheet thinning and retreat. Incorporation of these constraints and improved understanding of the underlying mechanisms driving glacier thinning and grounding line retreat will ultimately improve continental scale ice sheet models which are used to project the future behaviour of the Antarctic Ice Sheet and its influence on global sea level.</p>


2021 ◽  
Author(s):  
Sainan Sun ◽  
Frank Pattyn

&lt;p&gt;Mass loss of the Antarctic ice sheet contributes the largest uncertainty of future sea-level rise projections. Ice-sheet model predictions are limited by uncertainties in climate forcing and poor understanding of processes such as ice viscosity. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) has investigated the 'end-member' scenario, i.e., a total and sustained removal of buttressing from all Antarctic ice shelves, which can be regarded as the upper-bound physical possible, but implausible contribution of sea-level rise due to ice-shelf loss. In this study, we add successive layers of &amp;#8216;realism&amp;#8217; to the ABUMIP scenario by considering sustained regional ice-shelf collapse and by introducing ice-shelf regrowth after collapse with the inclusion of ice-sheet and ice-shelf damage (Sun et al., 2017). Ice shelf regrowth has the ability to stabilize grounding lines, while ice shelf damage may reinforce ice loss. In combination with uncertainties from basal sliding and ice rheology, a more realistic physical upperbound to ice loss is sought. Results are compared in the light of other proposed mechanisms, such as MICI due to ice cliff collapse.&lt;/p&gt;


2017 ◽  
Vol 63 (240) ◽  
pp. 731-744 ◽  
Author(s):  
JORGE BERNALES ◽  
IRINA ROGOZHINA ◽  
MAIK THOMAS

ABSTRACTIce-shelf basal melting is the largest contributor to the negative mass balance of the Antarctic ice sheet. However, current implementations of ice/ocean interactions in ice-sheet models disagree with the distribution of sub-shelf melt and freezing rates revealed by recent observational studies. Here we present a novel combination of a continental-scale ice flow model and a calibration technique to derive the spatial distribution of basal melting and freezing rates for the whole Antarctic ice-shelf system. The modelled ice-sheet equilibrium state is evaluated against topographic and velocity observations. Our high-resolution (10-km spacing) simulation predicts an equilibrium ice-shelf basal mass balance of −1648.7 Gt a−1 that increases to −1917.0 Gt a−1 when the observed ice-shelf thinning rates are taken into account. Our estimates reproduce the complexity of the basal mass balance of Antarctic ice shelves, providing a reference for parameterisations of sub-shelf ocean/ice interactions in continental ice-sheet models. We perform a sensitivity analysis to assess the effects of variations in the model set-up, showing that the retrieved estimates of basal melting and freezing rates are largely insensitive to changes in the internal model parameters, but respond strongly to a reduction of model resolution and the uncertainty in the input datasets.


1979 ◽  
Vol 24 (90) ◽  
pp. 213-230 ◽  
Author(s):  
Craig S. Lingle ◽  
James A. Clark

AbstractThe Antarctic ice sheet has been reconstructed at 18000 years b.p. by Hughes and others (in press) using an ice-flow model. The volume of the portion of this reconstruction which contributed to a rise of post-glacial eustatic sea-level has been calculated and found to be (9.8±1.5) × 106 km3. This volume is equivalent to 25±4 m of eustatic sea-level rise, defined as the volume of water added to the ocean divided by ocean area. The total volume of the reconstructed Antarctic ice sheet was found to be (37±6) × 106 km3. If the results of Hughes and others are correct, Antarctica was the second largest contributor to post-glacial eustatic sea-level rise after the Laurentide ice sheet. The Farrell and Clark (1976) model for computation of the relative sea-level changes caused by changes in ice and water loading on a visco-elastic Earth has been applied to the ice-sheet reconstruction, and the results have been combined with the changes in relative sea-level caused by Northern Hemisphere deglaciation as previously calculated by Clark and others (1978). Three families of curves have been compiled, showing calculated relative sea-level change at different times near the margin of the possibly unstable West Antarctic ice sheet in the Ross Sea, Pine Island Bay, and the Weddell Sea. The curves suggest that the West Antarctic ice sheet remained grounded to the edge of the continental shelf until c. 13000 years b.p., when the rate of sea-level rise due to northern ice disintegration became sufficient to dominate emergence near the margin predicted otherwise to have been caused by shrinkage of the Antarctic ice mass. In addition, the curves suggest that falling relative sea-levels played a significant role in slowing and, perhaps, reversing retreat when grounding lines approached their present positions in the Ross and Weddell Seas. A predicted fall of relative sea-level beneath the central Ross Ice Shelf of as much as 23 m during the past 2000 years is found to be compatible with recent field evidence that the ice shelf is thickening in the south-east quadrant.


2021 ◽  
Author(s):  
Moritz Kreuzer ◽  
Ronja Reese ◽  
Willem Huiskamp ◽  
Stefan Petri ◽  
Torsten Albrecht ◽  
...  

&lt;p&gt;The past and future evolution of the Antarctic Ice Sheet is largely controlled by interactions between the ocean and floating ice shelves. To investigate these interactions, coupled ocean and ice sheet model configurations are required. Previous modelling studies have mostly relied on high resolution configurations, limiting these studies to individual glaciers or regions over short time scales of decades to a few centuries. To study global and long term interactions, we developed a framework to couple the dynamic ice sheet model PISM with the global ocean general circulation model MOM5 via the ice-shelf cavity module PICO. Since ice-shelf cavities are not resolved by MOM5, but parameterized with the box model PICO, the framework allows the ice sheet and ocean model to be run at resolution of 16&amp;#8201;km and 3 degrees, respectively. We present first results from our coupled setup and discuss stability, feedbacks, and interactions of the Antarctic Ice Sheet and the global ocean system on millennial time scales.&lt;/p&gt;


1998 ◽  
Vol 27 ◽  
pp. 161-168 ◽  
Author(s):  
Roland C. Warner ◽  
W.Κ. Budd

The primary effects of global warming on the Antarctic ice sheet can involve increases in surface melt for limited areas at lower elevations, increases in net accumulation, and increased basal melting under floating ice. For moderate global wanning, resulting in ocean temperature increases of a few °C, the large- increase in basal melting can become the dominant factor in the long-term response of the ice sheet. The results from ice-sheet modelling show that the increased basal melt rates lead to a reduction of the ice shelves, increased strain rates and flow at the grounding lines, then thinning and floating of the marine ice sheets, with consequential further basal melting. The mass loss from basal melting is counteracted to some extent by the increased accumulation, but in the long term the area of ice cover decreases, particularly in West Antarctica, and the mass loss can dominate. The ice-sheet ice-shelf model of Budd and others (1994) with 20 km resolution has been modified and used to carry out a number of sensitivity studies of the long-term response of the ice sheet to prescribed amounts of global warming. The changes in the ice sheet are computed out to near-equilibrium, but most of the changes take place with in the first lew thousand years. For a global mean temperature increase of 3°C with an ice-shelf basal melt rate of 5 m a−1 the ice shelves disappear with in the first few hundred years, and the marine-based parts of the ice sheet thin and retreat. By 2000 years the West Antarctic region is reduced to a number of small, isolated ice caps based on the bedrock regions which are near or above sea level. This allows the warmer surface ocean water to circulate through the archipelago in summer, causing a large change to the local climate of the region.


2020 ◽  
Author(s):  
Mariel Dirscherl ◽  
Andreas Dietz ◽  
Celia Baumhoer ◽  
Christof Kneisel ◽  
Claudia Kuenzer

&lt;p&gt;Antarctica stores ~91 % of the global ice mass making it the biggest potential contributor to global sea-level-rise. With increased surface air temperatures during austral summer as well as in consequence of global climate change, the ice sheet is subject to surface melting resulting in the formation of supraglacial lakes in local surface depressions. Supraglacial meltwater features may impact Antarctic ice dynamics and mass balance through three main processes. First of all, it may cause enhanced ice thinning thus a potentially negative Antarctic Surface Mass Balance (SMB). Second, the temporary injection of meltwater to the glacier bed may cause transient ice speed accelerations and increased ice discharge. The last mechanism involves a process called hydrofracturing i.e. meltwater-induced ice shelf collapse caused by the downward propagation of surface meltwater into crevasses or fractures, as observed along large coastal sections of the northern Antarctic Peninsula. Despite the known impact of supraglacial meltwater features on ice dynamics and mass balance, the Antarctic surface hydrological network remains largely understudied with an automated method for supraglacial lake and stream detection still missing. Spaceborne remote sensing and data of the Sentinel missions in particular provide an excellent basis for the monitoring of the Antarctic surface hydrological network at unprecedented spatial and temporal coverage.&lt;/p&gt;&lt;p&gt;In this study, we employ state-of-the-art machine learning for automated supraglacial lake and stream mapping on basis of optical Sentinel-2 satellite data. With more detail, we use a total of 72 Sentinel-2 acquisitions distributed across the Antarctic Ice Sheet together with topographic information to train and test the selected machine learning algorithm. In general, our machine learning workflow is designed to discriminate between surface water, ice/snow, rock and shadow being further supported by several automated post-processing steps. In order to ensure the algorithm&amp;#8217;s transferability in space and time, the acquisitions used for training the machine learning model are chosen to cover the full circle of the 2019 melt season and the data selected for testing the algorithm span the 2017 and 2018 melt seasons. Supraglacial lake predictions are presented for several regions of interest on the East and West Antarctic Ice Sheet as well as along the Antarctic Peninsula and are validated against randomly sampled points in the underlying Sentinel-2 RGB images. To highlight the performance of our model, we specifically focus on the example of the Amery Ice Shelf in East Antarctica, where we applied our algorithm on Sentinel-2 data in order to present the temporal evolution of maximum lake extent during three consecutive melt seasons (2017, 2018 and 2019).&lt;/p&gt;


2020 ◽  
Author(s):  
Frazer Christie ◽  
Toby Benham ◽  
Julian Dowdeswell

&lt;p&gt;The Antarctic Peninsula is one of the most rapidly warming regions on Earth. There, the recent destabilization of the Larsen A and B ice shelves has been directly attributed to this warming, in concert with anomalous changes in ocean circulation. Having rapidly accelerated and retreated following the demise of Larsen A and B, the inland glaciers once feeding these ice shelves now form a significant proportion of Antarctica&amp;#8217;s total contribution to global sea-level rise, and have become an exemplar for the fate of the wider Antarctic Ice Sheet under a changing climate. Together with other indicators of glaciological instability observable from satellites, abrupt pre-collapse changes in ice shelf terminus position are believed to have presaged the imminent disintegration of Larsen A and B, which necessitates the need for routine, close observation of this sector in order to accurately forecast the future stability of the Antarctic Peninsula Ice Sheet. To date, however, detailed records of ice terminus position along this region of Antarctica only span the observational period c.1950 to 2008, despite several significant changes to the coastline over the last decade, including the calving of giant iceberg A-68a from Larsen C Ice Shelf in 2017.&lt;/p&gt;&lt;p&gt;Here, we present high-resolution, annual records of ice terminus change along the entire western Weddell Sea Sector, extending southwards from the former Larsen A Ice Shelf on the eastern Antarctic Peninsula to the periphery of Filchner Ice Shelf. Terminus positions were recovered primarily from Sentinel-1a/b, TerraSAR-X and ALOS-PALSAR SAR imagery acquired over the period 2009-2019, and were supplemented with Sentinel-2a/b, Landsat 7 ETM+ and Landsat 8 OLI optical imagery across regions of complex terrain.&lt;/p&gt;&lt;p&gt;Confounding Antarctic Ice Sheet-wide trends of increased glacial recession and mass loss over the long-term satellite era, we detect glaciological advance along 83% of the ice shelves fringing the eastern Antarctic Peninsula between 2009 and 2019. With the exception of SCAR Inlet, where the advance of its terminus position is attributable to long-lasting ice dynamical processes following the disintegration of Larsen B, this phenomenon lies in close agreement with recent observations of unchanged or arrested rates of ice flow and thinning along the coastline. Global climate reanalysis and satellite passive-microwave records reveal that this spatially homogenous advance can be attributed to an enhanced buttressing effect imparted on the eastern Antarctic Peninsula&amp;#8217;s ice shelves, governed primarily by regional-scale increases in the delivery and concentration of sea ice proximal to the coastline.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document