scholarly journals Basal melt beneath Whillans Ice Stream and Ice Streams A and C, West Antarctica

2003 ◽  
Vol 36 ◽  
pp. 257-262 ◽  
Author(s):  
Ian R. Joughin ◽  
Slawek Tulaczyk ◽  
Hermann F. Engelhardt

AbstractWe have used a recently derived map of the velocity of Whillans Ice Stream and Ice Streams A and C, West Antarctica, to help estimate basal melt. Ice temperature was modeled with a simple vertical advection–diffusion equation,“tuned” to match temperature profiles. We find that most of the melt occurs beneath the tributaries, where larger basal shear stresses and thicker ice favor greater melt (e.g. 10–20mm a−1). The occurrence of basal freezing is predicted beneath much of the ice plains of Ice Stream C andWhillans Ice Stream. Modeled melt rates for when Ice Stream C was active suggest there was enough meltwater generated in its tributaries to balance basal freezing on its ice plain. Net basal melt for Whillans Ice Stream is greater due to less steep basal temperature gradients. Modeled temperatures on Whillans Ice Stream, however, were constrained by a single temperature profile at UpB. Basal temperature gradients for Whillans branch 1 and Ice Stream A may have conditions more similar to those beneath Ice Streams C and D, in which case, there may not be sufficient melt to sustain motion. This would be consistent with the steady deceleration of Whillans Ice Stream over the last few decades.

1993 ◽  
Vol 39 (133) ◽  
pp. 528-537 ◽  
Author(s):  
W. Jacobel Robert ◽  
M. Gades Anthony ◽  
L. Gottschling David ◽  
M. Hodge Steven ◽  
L. Wright David

AbstractLow-frequency surface-based radar-profiling experiments on Ice Streams Β and C, West Antarctica, have yielded high-resolution images which depict folding of the internal layers that can aid in the interpretation of ice-stream dynamics. Unlike folding seen in most earlier radar studies of ice sheets, the present structures have no relationship to bedrock topography and show tilting of their axial fold planes in the flow direction. Rather than being standing waves created by topography or local variations in basal shear stress, the data show that these folds originate upstream of the region of streaming flow and are advected into the ice streams. The mechanism for producing folds is hypothesized to be changes in the basal boundary conditions as the ice makes the transition from inland ice to ice-stream flow. Migration of this transition zone headward can then cause folds in the internal layering to be propagated down the ice streams.


Author(s):  
J. Paul Winberry ◽  
Sridhar Anandakrishnan ◽  
Richard B. Alley ◽  
Robert A. Bindschadler ◽  
Matt A. King

2004 ◽  
Vol 50 (168) ◽  
pp. 96-108 ◽  
Author(s):  
Ian Joughin ◽  
Slawek Tulaczyk ◽  
Douglas R. MacAyeal ◽  
Hermann Engelhardt

AbstractWe have estimated temperature gradients and melt rates at the bottom of the ice streams in West Antarctica. Measured velocities were used to include the effects of horizontal advection and strain heating in the temperature model and to determine shear heating at the bed. Our modeled temperatures agree well with measured temperatures from boreholes in regions of steady flow. We find that ice-stream tributaries and the inland ice account for about 87% of the total melt generated beneath the Ross ice streams and their catchments. Our estimates indicate that the ice plains of Whillans Ice Stream and Ice Stream C (even when active) have large areas subject to basal freezing, confirming earlier estimates that import of water from upstream is necessary to sustain motion. The relatively low melt rates on Whillans Ice Stream are consistent with observations of deceleration over the last few decades and suggest a shutdown may take place in the future, possibly within this century. While there are pockets of basal freezing beneath Ice Streams D and E, there are larger areas of basal melt that produce enough melt to more than offset the freezing, which is consistent with inferences of relatively steady flow for these ice streams over the last millennium.


1996 ◽  
Vol 42 (142) ◽  
pp. 461-475 ◽  
Author(s):  
Robert Bindschadler ◽  
Patricia Vornberger ◽  
Donald Blankenship ◽  
Ted Scambos ◽  
Robert Jacobel

AbstractOver 75 000 surface-velocity measurements are extracted from sequential satellite imagery of Ice Streams D and E to reveal a complex pattern of flow not apparent from previous measurements. Horizontal and vertical strain rates, calculated from surface velocity, indicate that the bed experiences larger basal shear where the surface of these ice streams is rougher. Ten airborne-radar profiles and one surface-based radar profile of ice thickness make possible the calculation of mass balance for longitudinal sections of each ice stream. Improved data-collection methods increase data density, substantially reducing random errors in velocity. However, systematic errors continue to limit the ability of the flux-differencing technique used here to resolve local variations in mass balance. Nevertheless, significant local variations in mass balance are revealed, while, overall, Ice Streams D and E are in approximate equilibrium. An earlier estimate of the net mass balance for Ice Stream D is improved.


2010 ◽  
Vol 56 (198) ◽  
pp. 647-654 ◽  
Author(s):  
Lucas H. Beem ◽  
Ken C. Jezek ◽  
C.J. Van Der Veen

AbstractBasal water lubricates and enables the fast flow of the West Antarctic ice streams which exist under low gravitational driving stress. Identification of sources and rates of basal meltwater production can provide insight into the dynamics of ice streams and the subglacial hydrology, which remain insufficiently described by glaciological theory. Combining measurements and analytic modeling, we identify two regions where basal meltwater is produced beneath Whillans Ice Stream, West Antarctica. Downstream of the onset of shear crevasses, strong basal melt (20–50 mm a−1) is concentrated beneath the relatively narrow shear margins. Farther upstream, melt rates are consistently 3–7 mm a−1 across the width of the ice stream. We show that the transition in melt-rate patterns is coincident with the onset of shear margin crevassing and streaming flow and related to the development of significant lateral shear resistance, which reorganizes the resistive stress regime and induces a concentration of basal resistance adjacent to the shear margin. Finally, we discuss how downstream freeze-on in the ice-stream center coupled with melt beneath the shear margin might result in a slowing but widening ice stream.


2009 ◽  
Vol 50 (52) ◽  
pp. 87-94 ◽  
Author(s):  
Olga V. Sergienko ◽  
Douglas R. MacAyeal ◽  
Robert A. Bindschadler

AbstractA puzzling phenomenon of ice-stream flow is the stick–slip motion displayed by Whillans Ice Stream (WIS), West Antarctica. In this study we test the hypothesis that the WIS stick–slip motion has features similar to those of other known stick–slip systems, and thus might be of the same origin. To do so, we adapt a simple mechanical model widely used in seismology to study classic stick–slip behavior observed in tectonic faults, in which the difference between static and dynamic friction allows for the generation and spatial propagation of abrupt slip events. We show how spatial variability in friction properties, as well as a periodic forcing intended to mimic the effect of tides, can reproduce the observed duration and periodicity of stick–slip motion in an ice stream. An intriguing aspect of the association of WIS with mechanical stick–slip oscillators is that the onset of stick–slip cycling from a condition of permanent slip appears to be associated with the reduction in overall speed of WIS. If this association is true, then stick–slip behavior of WIS is a transitional phase of behavior associated with the ice stream's recent deceleration.


1993 ◽  
Vol 39 (133) ◽  
pp. 528-537 ◽  
Author(s):  
W. Jacobel Robert ◽  
M. Gades Anthony ◽  
L. Gottschling David ◽  
M. Hodge Steven ◽  
L. Wright David

AbstractLow-frequency surface-based radar-profiling experiments on Ice Streams Β and C, West Antarctica, have yielded high-resolution images which depict folding of the internal layers that can aid in the interpretation of ice-stream dynamics. Unlike folding seen in most earlier radar studies of ice sheets, the present structures have no relationship to bedrock topography and show tilting of their axial fold planes in the flow direction. Rather than being standing waves created by topography or local variations in basal shear stress, the data show that these folds originate upstream of the region of streaming flow and are advected into the ice streams. The mechanism for producing folds is hypothesized to be changes in the basal boundary conditions as the ice makes the transition from inland ice to ice-stream flow. Migration of this transition zone headward can then cause folds in the internal layering to be propagated down the ice streams.


1996 ◽  
Vol 42 (142) ◽  
pp. 461-475 ◽  
Author(s):  
Robert Bindschadler ◽  
Patricia Vornberger ◽  
Donald Blankenship ◽  
Ted Scambos ◽  
Robert Jacobel

AbstractOver 75 000 surface-velocity measurements are extracted from sequential satellite imagery of Ice Streams D and E to reveal a complex pattern of flow not apparent from previous measurements. Horizontal and vertical strain rates, calculated from surface velocity, indicate that the bed experiences larger basal shear where the surface of these ice streams is rougher. Ten airborne-radar profiles and one surface-based radar profile of ice thickness make possible the calculation of mass balance for longitudinal sections of each ice stream. Improved data-collection methods increase data density, substantially reducing random errors in velocity. However, systematic errors continue to limit the ability of the flux-differencing technique used here to resolve local variations in mass balance. Nevertheless, significant local variations in mass balance are revealed, while, overall, Ice Streams D and E are in approximate equilibrium. An earlier estimate of the net mass balance for Ice Stream D is improved.


2013 ◽  
Vol 59 (218) ◽  
pp. 1147-1162 ◽  
Author(s):  
S.P. Carter ◽  
H.A. Fricker ◽  
M.R. Siegfried

AbstractThe subglacial water system of lower Whillans Ice Stream on the Siple Coast, West Antarctica, contains numerous connected subglacial lakes in three hydrological basins (northern, central and southern). We use Ice, Cloud and land Elevation Satellite (ICESat) data to derive estimates of lake volume change and regional thickness changes. By combining these results with a water budget model, we show that a uniform, localized thickness increase perturbed the hydropotential, resulting in a change in course of a major flow path within the system in 2005. Water originating from upper Whillans and Kamb Ice Streams that previously supplied the southern basin became diverted toward Subglacial Lake Whillans (SLW). This diversion led to a tenfold filling rate increase of SLW. Our observation suggests that water piracy may be common in the Siple Coast region, where the gentle basal relief makes the basal hydropotential particularly sensitive to small changes in ice thickness. Given the previously inferred connections between water piracy and ice-stream slowdown elsewhere in the region, the subtle and complex nature of this system presents new challenges for numerical models.


2019 ◽  
Vol 60 (79) ◽  
pp. 182-192 ◽  
Author(s):  
Bradley Paul Lipovsky ◽  
Colin R. Meyer ◽  
Lucas K. Zoet ◽  
Christine McCarthy ◽  
Dougal D. Hansen ◽  
...  

ABSTRACTThe evolution of glaciers and ice sheets depends on processes in the subglacial environment. Shear seismicity along the ice–bed interface provides a window into these processes. Such seismicity requires a rapid loss of strength that is typically ascribed to rate-weakening friction, i.e., decreasing friction with sliding or sliding rate. Many friction experiments have investigated glacial materials at the temperate conditions typical of fast flowing glacier beds. To our knowledge, however, these studies have all found rate-strengthening friction. Here, we investigate the possibility that rate-weakening rock-on-rock friction between sediments frozen to the bottom of the glacier and the underlying water-saturated sediments or bedrock may be responsible for subglacial shear seismicity along temperate glacier beds. We test this ‘entrainment-seismicity hypothesis’ using targeted laboratory experiments and simple models of glacier sliding, seismicity and sediment entrainment. These models suggest that sediment entrainment may be a necessary but not sufficient condition for the occurrence of basal shear seismicity. We propose that stagnation at the Whillans Ice Stream, West Antarctica may be caused by the growth of a frozen fringe of entrained sediment in the ice stream margins. Our results suggest that basal shear seismicity may indicate geomorphic activity.


Sign in / Sign up

Export Citation Format

Share Document