scholarly journals Melting and freezing beneath the Ross ice streams, Antarctica

2004 ◽  
Vol 50 (168) ◽  
pp. 96-108 ◽  
Author(s):  
Ian Joughin ◽  
Slawek Tulaczyk ◽  
Douglas R. MacAyeal ◽  
Hermann Engelhardt

AbstractWe have estimated temperature gradients and melt rates at the bottom of the ice streams in West Antarctica. Measured velocities were used to include the effects of horizontal advection and strain heating in the temperature model and to determine shear heating at the bed. Our modeled temperatures agree well with measured temperatures from boreholes in regions of steady flow. We find that ice-stream tributaries and the inland ice account for about 87% of the total melt generated beneath the Ross ice streams and their catchments. Our estimates indicate that the ice plains of Whillans Ice Stream and Ice Stream C (even when active) have large areas subject to basal freezing, confirming earlier estimates that import of water from upstream is necessary to sustain motion. The relatively low melt rates on Whillans Ice Stream are consistent with observations of deceleration over the last few decades and suggest a shutdown may take place in the future, possibly within this century. While there are pockets of basal freezing beneath Ice Streams D and E, there are larger areas of basal melt that produce enough melt to more than offset the freezing, which is consistent with inferences of relatively steady flow for these ice streams over the last millennium.

1993 ◽  
Vol 39 (133) ◽  
pp. 528-537 ◽  
Author(s):  
W. Jacobel Robert ◽  
M. Gades Anthony ◽  
L. Gottschling David ◽  
M. Hodge Steven ◽  
L. Wright David

AbstractLow-frequency surface-based radar-profiling experiments on Ice Streams Β and C, West Antarctica, have yielded high-resolution images which depict folding of the internal layers that can aid in the interpretation of ice-stream dynamics. Unlike folding seen in most earlier radar studies of ice sheets, the present structures have no relationship to bedrock topography and show tilting of their axial fold planes in the flow direction. Rather than being standing waves created by topography or local variations in basal shear stress, the data show that these folds originate upstream of the region of streaming flow and are advected into the ice streams. The mechanism for producing folds is hypothesized to be changes in the basal boundary conditions as the ice makes the transition from inland ice to ice-stream flow. Migration of this transition zone headward can then cause folds in the internal layering to be propagated down the ice streams.


Author(s):  
J. Paul Winberry ◽  
Sridhar Anandakrishnan ◽  
Richard B. Alley ◽  
Robert A. Bindschadler ◽  
Matt A. King

1993 ◽  
Vol 39 (133) ◽  
pp. 553-561 ◽  
Author(s):  
Rory Retzlaff ◽  
Charles R. Bentley

AbstractFive short-pulse radar profiles were run across the edge of inactive Ice Stream C, one of the “Ross” ice streams that flows from the West Antarctic inland ice sheet into the Ross Ice Shelf. Scatter from buried crevasses, which we presume were at the surface of the ice stream when it was active, creates hyperbolae on the radar records. A density-depth curve and local accumulation rates were used to convert the picked travel times of the apices of the hyperbolae into stagnation ages for the ice stream. Stagnation ages are 130 ± 25 year for the three profiles farthest downstream and marginally less (100 ± 30 year) for the fourth. The profile farthest upstream shows a stagnation age of only ~30 year. We believe that these results indicate a “wave” of stagnation propagating at a diminishing speed upstream from the mouth of the ice stream, and we suggest that the stagnation process involves a drop in water pressure at the bed due to a conversion from sheet flow to channelized water flow.


2010 ◽  
Vol 56 (198) ◽  
pp. 647-654 ◽  
Author(s):  
Lucas H. Beem ◽  
Ken C. Jezek ◽  
C.J. Van Der Veen

AbstractBasal water lubricates and enables the fast flow of the West Antarctic ice streams which exist under low gravitational driving stress. Identification of sources and rates of basal meltwater production can provide insight into the dynamics of ice streams and the subglacial hydrology, which remain insufficiently described by glaciological theory. Combining measurements and analytic modeling, we identify two regions where basal meltwater is produced beneath Whillans Ice Stream, West Antarctica. Downstream of the onset of shear crevasses, strong basal melt (20–50 mm a−1) is concentrated beneath the relatively narrow shear margins. Farther upstream, melt rates are consistently 3–7 mm a−1 across the width of the ice stream. We show that the transition in melt-rate patterns is coincident with the onset of shear margin crevassing and streaming flow and related to the development of significant lateral shear resistance, which reorganizes the resistive stress regime and induces a concentration of basal resistance adjacent to the shear margin. Finally, we discuss how downstream freeze-on in the ice-stream center coupled with melt beneath the shear margin might result in a slowing but widening ice stream.


2009 ◽  
Vol 50 (52) ◽  
pp. 87-94 ◽  
Author(s):  
Olga V. Sergienko ◽  
Douglas R. MacAyeal ◽  
Robert A. Bindschadler

AbstractA puzzling phenomenon of ice-stream flow is the stick–slip motion displayed by Whillans Ice Stream (WIS), West Antarctica. In this study we test the hypothesis that the WIS stick–slip motion has features similar to those of other known stick–slip systems, and thus might be of the same origin. To do so, we adapt a simple mechanical model widely used in seismology to study classic stick–slip behavior observed in tectonic faults, in which the difference between static and dynamic friction allows for the generation and spatial propagation of abrupt slip events. We show how spatial variability in friction properties, as well as a periodic forcing intended to mimic the effect of tides, can reproduce the observed duration and periodicity of stick–slip motion in an ice stream. An intriguing aspect of the association of WIS with mechanical stick–slip oscillators is that the onset of stick–slip cycling from a condition of permanent slip appears to be associated with the reduction in overall speed of WIS. If this association is true, then stick–slip behavior of WIS is a transitional phase of behavior associated with the ice stream's recent deceleration.


1993 ◽  
Vol 39 (133) ◽  
pp. 528-537 ◽  
Author(s):  
W. Jacobel Robert ◽  
M. Gades Anthony ◽  
L. Gottschling David ◽  
M. Hodge Steven ◽  
L. Wright David

AbstractLow-frequency surface-based radar-profiling experiments on Ice Streams Β and C, West Antarctica, have yielded high-resolution images which depict folding of the internal layers that can aid in the interpretation of ice-stream dynamics. Unlike folding seen in most earlier radar studies of ice sheets, the present structures have no relationship to bedrock topography and show tilting of their axial fold planes in the flow direction. Rather than being standing waves created by topography or local variations in basal shear stress, the data show that these folds originate upstream of the region of streaming flow and are advected into the ice streams. The mechanism for producing folds is hypothesized to be changes in the basal boundary conditions as the ice makes the transition from inland ice to ice-stream flow. Migration of this transition zone headward can then cause folds in the internal layering to be propagated down the ice streams.


1993 ◽  
Vol 39 (133) ◽  
pp. 553-561 ◽  
Author(s):  
Rory Retzlaff ◽  
Charles R. Bentley

AbstractFive short-pulse radar profiles were run across the edge of inactive Ice Stream C, one of the “Ross” ice streams that flows from the West Antarctic inland ice sheet into the Ross Ice Shelf. Scatter from buried crevasses, which we presume were at the surface of the ice stream when it was active, creates hyperbolae on the radar records. A density-depth curve and local accumulation rates were used to convert the picked travel times of the apices of the hyperbolae into stagnation ages for the ice stream. Stagnation ages are 130 ± 25 year for the three profiles farthest downstream and marginally less (100 ± 30 year) for the fourth. The profile farthest upstream shows a stagnation age of only ~30 year. We believe that these results indicate a “wave” of stagnation propagating at a diminishing speed upstream from the mouth of the ice stream, and we suggest that the stagnation process involves a drop in water pressure at the bed due to a conversion from sheet flow to channelized water flow.


2013 ◽  
Vol 59 (218) ◽  
pp. 1147-1162 ◽  
Author(s):  
S.P. Carter ◽  
H.A. Fricker ◽  
M.R. Siegfried

AbstractThe subglacial water system of lower Whillans Ice Stream on the Siple Coast, West Antarctica, contains numerous connected subglacial lakes in three hydrological basins (northern, central and southern). We use Ice, Cloud and land Elevation Satellite (ICESat) data to derive estimates of lake volume change and regional thickness changes. By combining these results with a water budget model, we show that a uniform, localized thickness increase perturbed the hydropotential, resulting in a change in course of a major flow path within the system in 2005. Water originating from upper Whillans and Kamb Ice Streams that previously supplied the southern basin became diverted toward Subglacial Lake Whillans (SLW). This diversion led to a tenfold filling rate increase of SLW. Our observation suggests that water piracy may be common in the Siple Coast region, where the gentle basal relief makes the basal hydropotential particularly sensitive to small changes in ice thickness. Given the previously inferred connections between water piracy and ice-stream slowdown elsewhere in the region, the subtle and complex nature of this system presents new challenges for numerical models.


2003 ◽  
Vol 36 ◽  
pp. 257-262 ◽  
Author(s):  
Ian R. Joughin ◽  
Slawek Tulaczyk ◽  
Hermann F. Engelhardt

AbstractWe have used a recently derived map of the velocity of Whillans Ice Stream and Ice Streams A and C, West Antarctica, to help estimate basal melt. Ice temperature was modeled with a simple vertical advection–diffusion equation,“tuned” to match temperature profiles. We find that most of the melt occurs beneath the tributaries, where larger basal shear stresses and thicker ice favor greater melt (e.g. 10–20mm a−1). The occurrence of basal freezing is predicted beneath much of the ice plains of Ice Stream C andWhillans Ice Stream. Modeled melt rates for when Ice Stream C was active suggest there was enough meltwater generated in its tributaries to balance basal freezing on its ice plain. Net basal melt for Whillans Ice Stream is greater due to less steep basal temperature gradients. Modeled temperatures on Whillans Ice Stream, however, were constrained by a single temperature profile at UpB. Basal temperature gradients for Whillans branch 1 and Ice Stream A may have conditions more similar to those beneath Ice Streams C and D, in which case, there may not be sufficient melt to sustain motion. This would be consistent with the steady deceleration of Whillans Ice Stream over the last few decades.


2003 ◽  
Vol 36 ◽  
pp. 66-72 ◽  
Author(s):  
Martin Truffer ◽  
Keith A. Echelmeyer

AbstractFast-flowing ice streams and outlet glaciers provide the major avenues for ice flow from past and present ice sheets. These ice streams move faster than the surrounding ice sheet by a factor of 100 or more. Several mechanisms for fast ice-stream flow have been identified, leading to a spectrum of different ice-stream types. In this paper we discuss the two end members of this spectrum, which we term the “ice-stream” type (represented by the Siple Coast ice streams in West Antarctica) and the “isbræ” type (represented by Jakobshavn Isbræ in Greenland). The typical ice stream is wide, relatively shallow (∼1000 m), has a low surface slope and driving stress (∼10 kPa), and ice-stream location is not strongly controlled by bed topography. Fast flow is possible because the ice stream has a slippery bed, possibly underlain by weak, actively deforming sediments. The marginal shear zones are narrow and support most of the driving stress, and the ice deforms almost exclusively by transverse shear. The margins seem to be inherently unstable; they migrate, and there are plausible mechanisms for such ice streams to shut down. The isbræ type of ice stream is characterized by very high driving stresses, often exceeding 200 kPa. They flow through deep bedrock channels that are significantly deeper than the surrounding ice, and have steep surface slopes. Ice deformation includes vertical as well as lateral shear, and basal motion need not contribute significantly to the overall motion. The marginal shear zone stend to be wide relative to the isbræ width, and the location of isbræ and its margins is strongly controlled by bedrock topography. They are stable features, and can only shut down if the high ice flux cannot be supplied from the adjacent ice sheet. Isbræs occur in Greenland and East Antarctica, and possibly parts of Pine Island and Thwaites Glaciers, West Antarctica. In this paper, we compare and contrast the two types of ice streams, addressing questions such as ice deformation, basal motion, subglacial hydrology, seasonality of ice flow, and stability of the ice streams.


Sign in / Sign up

Export Citation Format

Share Document