scholarly journals ERS SAR feature-tracking measurement of outlet glacier velocities on a regional scale in East Greenland

2003 ◽  
Vol 36 ◽  
pp. 129-134 ◽  
Author(s):  
Adrian Luckman ◽  
Tavi Murray ◽  
Hester Jiskoot ◽  
Hamish Pritchard ◽  
Tazio Strozzi

AbstractFeature tracking, or patch intensity cross-correlation, is used to derive two-dimensional ice-surface velocity fields from 1day and 35 day repeat-pass European Remote-sensing Satellite (ERS) synthetic aperture radar (SAR) data covering a 500 km by 500 km area of central East Greenland. Over regions of fast ice flow, 35 day tracking yields only a slightly lower density of velocity measurements than 1day tracking, and both are broadly in agreement about the spatial pattern of ice velocity except at the glacier termini where tidal effects may dominate. This study suggests that SAR feature tracking may be used to routinely monitor ice-discharge velocities on a regional basis and thereby inform studies of regional mass balance.

2013 ◽  
Vol 54 (63) ◽  
pp. 221-228 ◽  
Author(s):  
James Turrin ◽  
Richard R. Forster ◽  
Chris Larsen ◽  
Jeanne Sauber

AbstractBering Glacier, Alaska, USA, has a ∼20 year surge cycle, with its most recent surge reaching the terminus in 2011. To study this most recent activity a time series of ice velocity maps was produced by applying optical feature-tracking methods to Landsat-7 ETM+ imagery spanning 2001-11. The velocity maps show a yearly increase in ice surface velocity associated with the down-glacier movement of a surge front. In 2008/09 the maximum ice surface velocity was 1.5 ±0.017 km a-1 in the mid-ablation zone, which decreased to 1.2 ±0.015 km a-1 in 2009/10 in the lower ablation zone, and then increased to nearly 4.4 ± 0.03 km a-1 in summer 2011 when the surge front reached the glacier terminus. The surge front propagated down-glacier as a kinematic wave at an average rate of 4.4 ±2.0 km a-1 between September 2002 and April 2009, then accelerated to 13.9 ± 2.0 km a-1 as it entered the piedmont lobe between April 2009 and September 2010. The wave seems to have initiated near the confluence of Bering Glacier and Bagley Ice Valley as early as 2001, and the surge was triggered in 2008 further down-glacier in the mid-ablation zone after the wave passed an ice reservoir area.


2014 ◽  
Vol 2 (2) ◽  
pp. 911-933 ◽  
Author(s):  
N. F. Glasser ◽  
S. J. A. Jennings ◽  
M. J. Hambrey ◽  
B. Hubbard

Abstract. Continent-wide mapping of longitudinal ice-surface structures on the Antarctic Ice Sheet reveals that they originate in the interior of the ice sheet and are arranged in arborescent networks fed by multiple tributaries. Longitudinal ice-surface structures can be traced continuously down-ice for distances of up to 1200 km. They are co-located with fast-flowing glaciers and ice streams that are dominated by basal sliding rates above tens of m yr-1 and are strongly guided by subglacial topography. Longitudinal ice-surface structures dominate regions of converging flow, where ice flow is subject to non-coaxial strain and simple shear. Associating these structures with the AIS' surface velocity field reveals (i) ice residence times of ~ 2500 to 18 500 years, and (ii) undeformed flow-line sets for all major flow units analysed except the Kamb Ice Stream and the Institute and Möller Ice Stream areas. Although it is unclear how long it takes for these features to form and decay, we infer that the major ice-flow and ice-velocity configuration of the ice sheet may have remained largely unchanged for several thousand years, and possibly even since the end of the last glacial cycle. This conclusion has implications for our understanding of the long-term landscape evolution of Antarctica, including large-scale patterns of glacial erosion and deposition.


1995 ◽  
Vol 41 (139) ◽  
pp. 584-595 ◽  
Author(s):  
John L. Dwyer

AbstractLandsat multispectral scanner and thematic mapper images were co-registered For the Kangerdlugssuaq Fjord region in East Greenland and were used to map glacier drainage-basin areas, changes in the positions of tide-water glacier termini and to estimate surface velocities of the larger tide-water glaciers. Statistics were compiled to document distance and area changes to glacier termini. The methodologies developed in this study are broadly applicable to the investigation of tide-water glaciers in other areas. The number of images available for consecutive years and the accuracy with which images are co-registered are key factors that influence the degree to which regional glacier dynamics can be characterized using remotely sensed data.Three domains of glacier state were interpreted: net increase in terminus area in the southern part of the study area, net loss of terminus area for glaciers in upper Kangerdlugssuaq Fjord and a slight loss of glacier terminus area northward from Ryberg Fjord. Local increases in the concentrations of drifting icebergs in the fjords coincide with the observed extension of glacier termini positions Ice-surface velocity estimates were derived for several glaciers using automated image cross-correlation techniques The velocity determined for Kangerdlugssuaq Gletscher is approximately 5.0 km a−1and that for Kong Christian IV Gletscher is 0.9 km a−1. The continuous presence of icebergs and brash ice in front of these glaciers indicates sustained rates of ice-front calving.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Julia Christmann ◽  
Veit Helm ◽  
Shfaqat Abbas Khan ◽  
Thomas Kleiner ◽  
Ralf Müller ◽  
...  

AbstractFuture projections of global mean sea level change are uncertain, partly because of our limited understanding of the dynamics of Greenland’s outlet glaciers. Here we study Nioghalvfjerdsbræ, an outlet glacier of the Northeast Greenland Ice Stream that holds 1.1 m sea-level equivalent of ice. We use GPS observations and numerical modelling to investigate the role of tides as well as the elastic contribution to glacier flow. We find that ocean tides alter the basal lubrication of the glacier up to 10 km inland of the grounding line, and that their influence is best described by a viscoelastic rather than a viscous model. Further inland, sliding is the dominant mechanism of fast glacier motion, and the ice flow induces persistent elastic strain. We conclude that elastic deformation plays a role in glacier flow, particularly in areas of steep topographic changes and fast ice velocities.


2021 ◽  
Author(s):  
Bryan Riel ◽  
Brent Minchew ◽  
Tobias Bischoff

<p>Reliable projections of sea level rise depend on accurate representations of how fast-flowing glaciers slip along their beds. Specifically, ice sheet models require a quantitative sliding law that relates basal drag to sliding velocity and glacier geometry, yet the proper form of the law remains uncertain. Here, we present a novel deep learning-based framework for learning the time evolution of basal drag from time-dependent ice surface velocity and elevation observations. We train a pair of probabilistic neural networks through a combination of time-dependent surface observations, governing equations for ice flow, and known physical constraints. Neural network outputs are stochastic predictions of time-varying basal drag that do not require any prior assumptions on the form of the sliding law. This training strategy is well-suited to large volumes of remote sensing data while providing a natural way to integrate our existing understanding of the physics of ice flow into the learning process.</p><p>We test this framework on 1D and 2D ice flow simulations and demonstrate that, under certain stress conditions, recovery of the underlying sliding law parameters and their uncertainties can be derived from the stochastic predictions of time-varying basal drag. We also apply these methods to Rutford Ice Stream and Pine Island Glacier in Antarctica to investigate subglacial hydrological effects for the former and evidence for regularized Coulomb sliding for the latter.</p>


2015 ◽  
Vol 27 (5) ◽  
pp. 511-523 ◽  
Author(s):  
M.L. Pittard ◽  
J.L. Roberts ◽  
C.S. Watson ◽  
B.K. Galton-Fenzi ◽  
R.C. Warner ◽  
...  

AbstractMonitoring the rate of ice flow into ice shelves is vital to understanding how, where and when mass changes occur in Antarctica. Previous observations of ice surface velocity indicate that the Amery Ice Shelf and tributary glaciers have been relatively stable over the period 1968 to 1999. This study measured the displacement of features on the ice surface over a sequence of Landsat 7 images separated by approximately one year and spanning 2004 to 2012 using the surface feature tracking software IMCORR. The focus is on the region surrounding the southern grounding zone of the Amery Ice Shelf and its primary tributary glaciers: the Fisher, Lambert and Mellor glaciers. No significant changes in surface velocity were observed over this period. Accordingly, the velocity fields from each image pair between 2004 and 2012 were used to synthesize an average velocity dataset of the Amery Ice Shelf region and to compare it to previously published velocity datasets and in situ global positioning system velocity observations. No significant change in ice surface velocities was found between 2004 and 2012 in the Amery Ice Shelf region, which suggests that it continues to remain stable.


1986 ◽  
Vol 8 ◽  
pp. 22-26 ◽  
Author(s):  
H. H. Brecher

Aerial photogrammetric block triangulation, a standard and well-developed technique for extending accurate control for mapping into the interior of a region from a few points of known position on its perimeter, can be readily adapted to determine surface velocities on bodies of ice which are too large, and often too crevassed, to be studied effectively by conventional ground surveying. Velocities are calculated from the changes in positions of the same natural surface features determined from photography of two (or more) epochs and the elapsed time. This method is capable of providing many uniformly-spaced measurements over the whole, moving, ice surface, thus allowing the production of maps of velocity and strain-rate, which are valuable in analyzing the ice-flow regime. Results from measurements completed some years ago on Byrd Glacier, one of the largest outlet glaciers from the East Antarctic plateau, are presented as an example of what the method can yield. By means of Doppler satellite surveying, relative positions of control points for each photography epoch can be determined with sub-meter accuracy, making the technique suitable also in regions where no fixed land features exist. A brief description of a project under way in such an area, on Ice Stream B in West Antarctica, is given.


1999 ◽  
Vol 45 (151) ◽  
pp. 575-583 ◽  
Author(s):  
Andreas Kääb ◽  
Martin Funk

AbstractThe kinematic boundary condition al the glacier surface can be used to give glacier mass balance at a point as a function of changes in the surface elevation, and of the horizontal and vertical velocities. Vertical velocity can in turn be estimated from basal slope, basal ice velocity and surface strain. In a pilot study on the tongue of Griesgletscher, Swiss Alps, the applicability of the relation for modelling area-wide ice flow and mass-balance distribution is tested. The key input of the calculations, i.e. the area-wide surface velocity field, is obtained using a newly developed photogrammetric technique. Ice thickness is derived from radar-echo soundings. Error estimates and comparisons with stake measurements show an average accuracy of approximately ±0.3 ma-1for the calculated vertical ice velocity at the surface and ±0.7 ma-1for the calculated mass balance. Due to photogrammetric restrictions and model-inherent sensitivities the applied model appeared to be most suitable for determining area-wide mass balance and ice flow on flat-lying ablation areas, but is so far not very well suited for steep ablation areas and most parts of accumulation areas. Nevertheless, the study on Griesgletscher opens a new and promising perspective for the monitoring of spatial and temporal glacier mass-balance variations.


2018 ◽  
Vol 59 (76pt1) ◽  
pp. 1-9 ◽  
Author(s):  
Yang Yuande ◽  
Ke Hao ◽  
Wang Zemin ◽  
Li Fei ◽  
Ding Minghu ◽  
...  

ABSTRACTUsing repeat GPS measurements during 2005–16, we calculated and updated two-dimensional high-resolution decadal ice surface velocity estimates along the traverse route from Zhongshan Station to and around Dome Argus, East Antarctica. Along the 71 sites of the transect, the magnitudes of ice velocity increased from near 0 in Dome Argus to 1, 10 and ~100 m a−1 at the sites DT416, DT333 and LT980, respectively. The comparison between GPS and interferometric synthetic aperture radar (InSAR) derived results agree well when the magnitude of the ice surface velocities is faster than 5 m a−1, and disagree for slower flow velocities. A scale value 1.15 and 0.12 can be applied to InSAR derived results over this region with ice surface velocity larger and <5 m a−1, respectively. We attributed the cause of the discrepancy to the insensitivity of InSAR to the magnitude of low ice surface velocities, thus confirming the importance of GPS fieldwork-based ground truth high-resolution ice velocity estimates to constrain ice-sheet dynamics.


Sign in / Sign up

Export Citation Format

Share Document