scholarly journals Deep drilling at Vostok station, Antarctica: history and recent events

2007 ◽  
Vol 47 ◽  
pp. 10-23 ◽  
Author(s):  
N.I. Vasiliev ◽  
P.G. Talalay ◽  
N.E. Bobin ◽  
V.K. Chistyakov ◽  
V.M. Zubkov ◽  
...  

AbstractDeep drilling into the ice sheet at Vostok station, Antarctica, was started by specialists of the Leningrad Mining Institute (since 1991, St Petersburg State Mining Institute) in 1970. Five deep holes were cored: hole No. 1 to 952 m; hole No. 2 to 450.4 m; hole No. 3G (3G-1, 3G-2) to 2201.7 m; hole No. 4G (4G-1, 4G-2) to 2546.4 m; and hole No. 5G (5G-1) to 3650.2 m depth. Drilling of hole 5G-1 is not yet complete. The deep drilling at Vostok station has had successes and problems. All the deep holes at Vostok have undergone at least one offset drilling operation because of problems with lost drills. These deviations were made successfully using a thermal drilling technique. Several drilling records have been achieved at Vostok station. The deepest dry hole, No. 1 (952 m), was made during Soviet Antarctic Expedition (SAE) 17 in 1972. The deepest fluid-filled hole, No. 5G-1, made by a thermal drill (TBZS-132), reached 2755 m during SAE 38 in 1993. The deepest fluid-filled hole in ice, No. 5G-1, was drilled with a KEMS-132 electromechanical drill and was stopped above Vostok Subglacial Lake at 3650.2 m depth during Russian Antarctic Expedition (RAE) 51 in 2006.

2003 ◽  
Vol 49 (165) ◽  
pp. 179-183 ◽  
Author(s):  
Sergey V. Popov ◽  
Alexander N. Sheremet’Yev ◽  
Valery N. Masolov ◽  
Valery V. Lukin ◽  
Anatoliy V. Mironov ◽  
...  

AbstractDuring the austral summer field season of the Russian Antarctic Expedition in 1999/2000, wide-angle reflections experiments were performed in the vicinity of the Russian station Vostok. A 60 MHz ice radar system with 12-bit digital recording was used. The measurements were taken along two perpendicular lines directed south–north and east–west with a distance of 200 m between marks. We used a one-layer model (without snow–firn zone influence) for the calculations. We calculate that the average velocity of radio-wave propagation in the ice sheet is168.4 ± 0.5 m μs−1.The same velocity was derived from hyperbolic diffractions from internal discontinuities. The results allow more accurate depth interpretation of radio-echo soundings.


2021 ◽  
Vol 44 (3) ◽  
pp. 333-343
Author(s):  
D. V. Serbin ◽  
A. N. Dmitriev ◽  
N. I. Vasiliev

The paper deals with a new opening technology for subglacial reservoirs, which ensures environmentally friendly geological exploration. The technology is based on the results of the first openings of the subglacial Lake Vostok in Antarctica (February 2012 and January 2015). The primary goal of further studies of the subglacial Lake Vostok is to take clean samples of lake water and bottom sediments, which requires direct penetration into the lake. There is a number of conditions to be met in order to conduct further studies of the lake using a clean access well at the Vostok drilling complex. The article summarizes the main results including technological and engineering solutions protected by the patent of the Russian Federation. A detailed consideration is given to a new device for fusion drilling with simultaneous reaming of an ice hole. This device combines two technological processes: drilling due to contact melting, and an increase in the diameter of the well due to the creation of a vortex flow of a continuously heated coolant in the bottomhole zone. The thermal method of ice breaking ensures the ecological cleanliness when opening subglacial reservoirs and is a priority method that favorably differs from the existing ones. The device was named a “thermal drill reamer” (TDR). During the seasonal work of the 64th Russian Antarctic Expedition bench tests of the TDR 132/400 were carried out, the results of which confirmed that the device is capable to ensure 132 mm drilling with simultaneous reaming up to 400 mm.


Author(s):  
Vladimir Ya. Lipenkov ◽  
Alexey A. Ekaykin ◽  
Ekaterina V. Polyakova ◽  
Dominique Raynaud

Deep drilling at the Vostok Station has reached the surface of subglacial Lake Vostok (LV) twice—in February 2012 and January 2015. As a result, three replicate cores from boreholes 5G-1, 5G-2 and 5G-3 became available for detailed and revalidation analyses of the 230 m thickness of the accreted ice, down to its contact with water at 3769 m below the surface. The study reveals that the concentration of gases in the lake water beneath Vostok is unexpectedly low. A clear signature of the melt water in the surface layer of the lake, which is subject to refreezing on the icy ceiling of LV, has been discerned in the three different properties of the accreted ice: the ice texture, the isotopic and the gas content of the ice. These sets of data indicate in concert that poor mixing of the melt (and hydrothermal) water with the resident lake water and pronounced spatial and/or temporal variability of local hydrological conditions are likely to be the characteristics of the southern end of the lake. The latter implies that the surface water may be not representative enough to study LV's behaviour, and that direct sampling of the lake at different depths is needed in order to move ahead with our understanding of the lake's hydrological regime.


2021 ◽  
pp. 1-10
Author(s):  
Alexey A. Ekaykin ◽  
Alexey V. Bolshunov ◽  
Vladimir Ya. Lipenkov ◽  
Mirko Scheinert ◽  
Lutz Eberlein ◽  
...  

Abstract The region of Ridge B in central East Antarctica is one of the last unexplored parts of the continent and, at the same time, ranks among the most promising places to search for Earth's oldest ice. In January 2020, we carried out the first scientific traverse from Russia's Vostok Station to the topographical dome of Ridge B (Dome B, 3807 m above sea level, 79.02°S, 93.69°E). The glaciological programme included continuous snow-radar profiling and geodetic positioning along the traverse's route, installation of snow stakes, measurements of snow density, collection of samples for stable water isotope and chemical analyses and drilling of a 20 m firn core. The first results of the traverse show that the surface mass balance at Dome B (2.28 g cm−2 year−1) is among the lowest in Antarctica. The firn temperature below the layer of annual variations is −58.1 ± 0.2°C. A very low value of heavy water stable isotope content (-58.2‰ for oxygen-18) was discovered at a distance of 170 km from Vostok Station. This work is the first step towards a comprehensive reconnaissance study of the Ridge B area aimed at locating the best site for future deep drilling for the oldest Antarctic ice.


1957 ◽  
Vol 3 (21) ◽  
pp. 54-61 ◽  
Author(s):  
P. A. Shumskiy

Abstract This paper presents a preliminary account of the glaciological observations made by the Antarctic Expedition of the U.S.S.R. Academy of Sciences in Kaiser Wilhelm II Land, Queen Mary Land and Knox Coast in 1956. The topography of the edge of the ice sheet is described, and the ice regime is discussed, particularly in relation to the existence of ice-free areas such as “Bunger’s oasis”.


1999 ◽  
Vol 45 (150) ◽  
pp. 201-213 ◽  
Author(s):  
E.M. Shoemaker

AbstractThe effect of subglacial lakes upon ice-sheet topography and the velocity patterns of subglacial water-sheet floods is investigated. A subglacial lake in the combined Michigan–Green Bay basin, Great Lakes, North America, leads to: (1) an ice-sheet lobe in the lee of Lake Michigan; (2) a change in orientations of flood velocities across the site of a supraglacial trough aligned closely with Green Bay, in agreement with drumlin orientations; (3) low water velocities in the lee of Lake Michigan where drumlins are absent; and (4) drumlinization occurring in regions of predicted high water velocities. The extraordinary divergence of drumlin orientations near Lake Ontario is explained by the presence of subglacial lakes in the Ontario and Erie basins, along with ice-sheet displacements of up to 30 km in eastern Lake Ontario. The megagrooves on the islands in western Lake Erie are likely to be the product of the late stage of a water-sheet flood when outflow from eastern Lake Ontario was dammed by displaced ice and instead flowed westward along the Erie basin. The Finger Lakes of northern New York state, northeastern U.S.A., occur in a region of likely ice-sheet grounding where water sheets became channelized. Green Bay and Grand Traverse Bay are probably the products of erosion along paths of strongly convergent water-sheet flow.


Sign in / Sign up

Export Citation Format

Share Document