scholarly journals Characterization of subglacial Lake Vostok as seen from physical and isotope properties of accreted ice

Author(s):  
Vladimir Ya. Lipenkov ◽  
Alexey A. Ekaykin ◽  
Ekaterina V. Polyakova ◽  
Dominique Raynaud

Deep drilling at the Vostok Station has reached the surface of subglacial Lake Vostok (LV) twice—in February 2012 and January 2015. As a result, three replicate cores from boreholes 5G-1, 5G-2 and 5G-3 became available for detailed and revalidation analyses of the 230 m thickness of the accreted ice, down to its contact with water at 3769 m below the surface. The study reveals that the concentration of gases in the lake water beneath Vostok is unexpectedly low. A clear signature of the melt water in the surface layer of the lake, which is subject to refreezing on the icy ceiling of LV, has been discerned in the three different properties of the accreted ice: the ice texture, the isotopic and the gas content of the ice. These sets of data indicate in concert that poor mixing of the melt (and hydrothermal) water with the resident lake water and pronounced spatial and/or temporal variability of local hydrological conditions are likely to be the characteristics of the southern end of the lake. The latter implies that the surface water may be not representative enough to study LV's behaviour, and that direct sampling of the lake at different depths is needed in order to move ahead with our understanding of the lake's hydrological regime.

Biology ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 55 ◽  
Author(s):  
Colby Gura ◽  
Scott O. Rogers

A combined metatranscriptomic and metagenomic study of Vostok (Antarctica) ice core sections from glacial, basal, and lake water accretion ice yielded sequences that indicated a wide variety of species and possible conditions at the base of the glacier and in subglacial Lake Vostok. Few organisms were in common among the basal ice and accretion ice samples, suggesting little transmission of viable organisms from the basal ice meltwater into the lake water. Additionally, samples of accretion ice, each of which originated from water in several locations of the shallow embayment, exhibit only small amounts of mixing of species. The western-most portion of the embayment had very low numbers of organisms, likely due to biologically challenging conditions. Increasing numbers of organisms were found progressing from west to east, up to approximately 7 km into the embayment. At that point, the numbers of unique sequences and sequence reads from thermophilic, thermotolerant, psychrophilic, and psychrotolerant organisms increased dramatically, as did sequences from alkaliphilic, alkalitolerant, acidophilic, and acidotolerant sequences. The number of unique and total sequences were positively associated with increases in concentrations of Na+, Ca2+, Mg2+, SO42−, Cl−, total amino acids, and non-purgeable organic carbon. The numbers of unique sequences from organisms reported from soil, sediment, ice, aquatic, marine, animal, and plant (probably pollen) sources also peaked in this region, suggesting that this was the most biologically active region. The confluence of the high numbers of organisms, physiologies, and metabolic capabilities suggests the presence of energy and nutrient sources in the eastern half of the embayment. Data from the main basin suggested a cold oligotrophic environment containing fewer organisms. In addition to bacteria, both the basal ice and accretion ice contained sequences from a diverse assemblage of eukaryotes, as well as from bacteria that are known to be associated with multicellular eukaryotes.


Author(s):  
Martin J. Siegert ◽  
John C. Priscu ◽  
Irina A. Alekhina ◽  
Jemma L. Wadham ◽  
W. Berry Lyons

After more than a decade of planning, three attempts were made in 2012–2013 to access, measure in situ properties and directly sample subglacial Antarctic lake environments. First, Russian scientists drilled into the top of Lake Vostok, allowing lake water to infiltrate, and freeze within, the lower part of the ice-core borehole, from which further coring would recover a frozen sample of surface lake water. Second, UK engineers tried unsuccessfully to deploy a clean-access hot-water drill, to sample the water column and sediments of subglacial Lake Ellsworth. Third, a US mission successfully drilled cleanly into subglacial Lake Whillans, a shallow hydraulically active lake at the coastal margin of West Antarctica, obtaining samples that would later be used to prove the existence of microbial life and active biogeochemical cycling beneath the ice sheet. This article summarizes the results of these programmes in terms of the scientific results obtained, the operational knowledge gained and the engineering challenges revealed, to collate what is known about Antarctic subglacial environments and how to explore them in future. While results from Lake Whillans testify to subglacial lakes as being viable biological habitats, the engineering challenges to explore deeper more isolated lakes where unique microorganisms and climate records may be found, as exemplified in the Lake Ellsworth and Vostok missions, are considerable. Through international cooperation, and by using equipment and knowledge of the existing subglacial lake exploration programmes, it is possible that such environments could be explored thoroughly, and at numerous sites, in the near future.


2013 ◽  
Vol 83 (4) ◽  
pp. 311-323 ◽  
Author(s):  
V. M. Kotlyakov ◽  
V. Ya. Lipenkov ◽  
N. I. Vasil’ev

Author(s):  
Sergey A. Bulat

This article examines the question of the possible existence of microbial life inhabiting the subglacial Lake Vostok buried beneath a 4 km thick Antarctic ice sheet. It represents the results of analysis of the only available frozen lake water samples obtained upon the first lake entry and subsequent re-coring the water frozen within the borehole. For comparison, results obtained by earlier molecular microbiological studies of accretion ice are included in this study, with the focus on thermophiles and an unknown bacterial phylotype. A description of two Lake Vostok penetrations is presented for the first time from the point of view of possible clean water sampling. Finally, the results of current studies of Lake Vostok frozen water samples are presented, with the focus on the discovery of another unknown bacterial phylotype w123-10 distantly related to the above-mentioned unknown phylotype AF532061 detected in Vostok accretion ice, both successfully passing all possible controls for contamination. The use of clean-room facilities and the establishment of a contaminant library are considered to be prerequisites for research on microorganisms from Lake Vostok. It seems that not yet recorded microbial life could exist within the Lake Vostok water body. In conclusion, the prospects for searching for lake inhabitants are expressed with the intention to sample the lake water as cleanly as possible in order to make sure that further results will be robust.


2021 ◽  
Vol 252 ◽  
pp. 779-787
Author(s):  
Aleksey Bolshunov ◽  
Nikolay Vasiliev ◽  
Igor Timofeev ◽  
Sergey Ignatiev ◽  
Dmitriy Vasiliev ◽  
...  

The subglacial Lake Vostok in Antarctic is a unique natural phenomenon, its comprehensive study involves sampling of water and bottom surface rocks. For further study of the lake, it is necessary to drill a new access well and develop environmentally safe technologies for its exploration. This article discusses existing and potential technologies for sampling bottom surface rocks of subglacial lakes. All these technologies meet environmental safety requirements and are conducive for sampling. The authors have proposed an alternative technology, using a walking device, which, due to its mobility, enables selective sampling of rocks across a large area from a single access well. The principal issues, related to the implementation of the proposed technology, are investigated within this article. This report is prepared by a team of specialists with many years of experience in drilling at the Vostok Station in Antarctic and in experimental work on the design of equipment and non-standard means of mechanization for complicated mining, geological and climatic conditions.


2014 ◽  
Vol 55 (65) ◽  
pp. 83-89 ◽  
Author(s):  
Valery V. Lukin ◽  
Nikolay I. Vasiliev

AbstractThis paper considers the state of the deep ice borehole 5G at the Russian Antarctic Vostok station after penetration to the surface water of Vostok Subglacial Lake. It discusses the peculiar features of drilling the ‘fresh frozen’ lake water that has risen in the borehole and the technology for subsequent study of the lake water layer via borehole 5G filled with a kerosene–Freon® mixture. The extremely high rise of lake water via the borehole is attributed to a hydraulic fracture at the side of the borehole, which diverted a large amount of drilling fluid. The proposed technology for the study of the water layer envisages minimal environmental impact and excludes penetration of any of the kerosene–Freon® mixture to the water layer. This technology has been presented several times at different international forums. There was no critical comment on the Environmental Impact Assessment of the technology at the 37th Antarctic Treaty Consultative Meeting in 2014 and it was adopted for implementation.


2007 ◽  
Vol 47 ◽  
pp. 10-23 ◽  
Author(s):  
N.I. Vasiliev ◽  
P.G. Talalay ◽  
N.E. Bobin ◽  
V.K. Chistyakov ◽  
V.M. Zubkov ◽  
...  

AbstractDeep drilling into the ice sheet at Vostok station, Antarctica, was started by specialists of the Leningrad Mining Institute (since 1991, St Petersburg State Mining Institute) in 1970. Five deep holes were cored: hole No. 1 to 952 m; hole No. 2 to 450.4 m; hole No. 3G (3G-1, 3G-2) to 2201.7 m; hole No. 4G (4G-1, 4G-2) to 2546.4 m; and hole No. 5G (5G-1) to 3650.2 m depth. Drilling of hole 5G-1 is not yet complete. The deep drilling at Vostok station has had successes and problems. All the deep holes at Vostok have undergone at least one offset drilling operation because of problems with lost drills. These deviations were made successfully using a thermal drilling technique. Several drilling records have been achieved at Vostok station. The deepest dry hole, No. 1 (952 m), was made during Soviet Antarctic Expedition (SAE) 17 in 1972. The deepest fluid-filled hole, No. 5G-1, made by a thermal drill (TBZS-132), reached 2755 m during SAE 38 in 1993. The deepest fluid-filled hole in ice, No. 5G-1, was drilled with a KEMS-132 electromechanical drill and was stopped above Vostok Subglacial Lake at 3650.2 m depth during Russian Antarctic Expedition (RAE) 51 in 2006.


Sign in / Sign up

Export Citation Format

Share Document