scholarly journals Accumulation variability over a small area in east Dronning Maud Land, Antarctica, as determined from shallow firn cores and snow pits: some implications for ice-core records

2005 ◽  
Vol 51 (174) ◽  
pp. 343-352 ◽  
Author(s):  
Lars Karlöf ◽  
Elisabeth Isaksson ◽  
Jan-Gunnar Winther ◽  
Niels Gundestrup ◽  
Harro A.J. Meijer ◽  
...  

AbstractWe investigate and quantify the variability of snow accumulation rate around a medium-depth firn core (160 m) drilled in east Dronning Maud Land, Antarctica (75°00′ S, 15°00’ E; 3470 m h.a.e. (ellipsoidal height)). We present accumulation data from five snow pits and five shallow (20 m) firn cores distributed within a 3.5–7 km distance, retrieved during the 2000/01 Nordic EPICA (European Project for Ice Coring in Antarctica) traverse. Snow accumulation rates estimated for shorter periods show higher spatial variance than for longer periods. Accumulation variability as recorded from the firn cores and snow pits cannot explain all the variation in the ion and isotope time series; other depositional and post-depositional processes need to be accounted for. Through simple statistical analysis we show that there are differences in sensitivity to these processes between the analyzed species. Oxygen isotopes and sulphate are more conservative in their post-depositional behaviour than the more volatile acids, such as nitrate and to some degree chloride and methanesulphonic acid. We discuss the possible causes for the accumulation variability and the implications for the interpretation of ice-core records.

2008 ◽  
Vol 54 (185) ◽  
pp. 315-323 ◽  
Author(s):  
Helgard Anschütz ◽  
Daniel Steinhage ◽  
Olaf Eisen ◽  
Hans Oerter ◽  
Martin Horwath ◽  
...  

AbstractSpatio-temporal variations of the recently determined accumulation rate are investigated using ground-penetrating radar (GPR) measurements and firn-core studies. The study area is located on Ritscherflya in western Dronning Maud Land, Antarctica, at an elevation range 1400–1560 m. Accumulation rates are derived from internal reflection horizons (IRHs), tracked with GPR, which are connected to a dated firn core. GPR-derived internal layer depths show small relief along a 22 km profile on an ice flowline. Average accumulation rates are about 190 kg m−2 a−1 (1980–2005) with spatial variability (1σ) of 5% along the GPR profile. The interannual variability obtained from four dated firn cores is one order of magnitude higher, showing 1σ standard deviations around 30%. Mean temporal variations of GPRderived accumulation rates are of the same magnitude or even higher than spatial variations. Temporal differences between 1980–90 and 1990–2005, obtained from two dated IRHs along the GPR profile, indicate temporally non-stationary processes, linked to spatial variations. Comparison with similarly obtained accumulation data from another coastal area in central Dronning Maud Land confirms this observation. Our results contribute to understanding spatio-temporal variations of the accumulation processes, necessary for the validation of satellite data (e.g. altimetry studies and gravity missions such as Gravity Recovery and Climate Experiment (GRACE)).


2017 ◽  
Author(s):  
Mai Winstrup ◽  
Paul Vallelonga ◽  
Helle A. Kjær ◽  
Tyler J. Fudge ◽  
James E. Lee ◽  
...  

Abstract. We present a 2700-year annually resolved timescale for the Roosevelt Island Climate Evolution (RICE) ice core, and reconstruct a past snow accumulation history for the coastal sector of the Ross Ice Shelf in West Antarctica. The timescale was constructed by identifying annual layers in multiple ice-core impurity records, employing both manual and automated counting approaches, and constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). The maritime setting of Roosevelt Island results in high sulfate influx from sea salts and marine biogenic emissions, which prohibits a routine detection of volcanic eruptions in the ice-core records. This led to the use of non-traditional chronological techniques for validating the timescale: RICE was synchronized to the WAIS Divide ice core, on the WD2014 timescale, using volcanic attribution based on direct measurements of ice-core acidity, as well as records of globally-synchronous, centennial-scale variability in atmospheric methane concentrations. The RICE accumulation history suggests stable values of 0.25 m water equivalent (w.e.) per year until around 1260 CE. Uncertainties in the correction for ice flow thinning of annual layers with depth do not allow a firm conclusion about long-term trends in accumulation rates during this early period but from 1260 CE to the present, accumulation rate trends have been consistently negative. The decrease in accumulation rates has been increasingly rapid over the last centuries, with the decrease since 1950 CE being more than 7 times greater than the average over the last 300 years. The current accumulation rate of 0.22 ± 0.06 m w.e. yr−1 (average since 1950 CE, ±1σ) is 1.49 standard deviations (86th percentile) below the mean of 50-year average accumulation rates observed over the last 2700 years.


2019 ◽  
Vol 15 (2) ◽  
pp. 751-779 ◽  
Author(s):  
Mai Winstrup ◽  
Paul Vallelonga ◽  
Helle A. Kjær ◽  
Tyler J. Fudge ◽  
James E. Lee ◽  
...  

Abstract. We present a 2700-year annually resolved chronology and snow accumulation history for the Roosevelt Island Climate Evolution (RICE) ice core, Ross Ice Shelf, West Antarctica. The core adds information on past accumulation changes in an otherwise poorly constrained sector of Antarctica. The timescale was constructed by identifying annual cycles in high-resolution impurity records, and it constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). Validation by volcanic and methane matching to the WD2014 chronology from the WAIS Divide ice core shows that the two timescales are in excellent agreement. In a companion paper, gas matching to WAIS Divide is used to extend the timescale for the deeper part of the core in which annual layers cannot be identified. Based on the annually resolved timescale, we produced a record of past snow accumulation at Roosevelt Island. The accumulation history shows that Roosevelt Island experienced slightly increasing accumulation rates between 700 BCE and 1300 CE, with an average accumulation of 0.25±0.02 m water equivalent (w.e.) per year. Since 1300 CE, trends in the accumulation rate have been consistently negative, with an acceleration in the rate of decline after the mid-17th century. The current accumulation rate at Roosevelt Island is 0.210±0.002 m w.e. yr−1 (average since 1965 CE, ±2σ), and it is rapidly declining with a trend corresponding to 0.8 mm yr−2. The decline observed since the mid-1960s is 8 times faster than the long-term decreasing trend taking place over the previous centuries, with decadal mean accumulation rates consistently being below average. Previous research has shown a strong link between Roosevelt Island accumulation rates and the location and intensity of the Amundsen Sea Low, which has a significant impact on regional sea-ice extent. The decrease in accumulation rates at Roosevelt Island may therefore be explained in terms of a recent strengthening of the ASL and the expansion of sea ice in the eastern Ross Sea. The start of the rapid decrease in RICE accumulation rates observed in 1965 CE may thus mark the onset of significant increases in regional sea-ice extent.


2015 ◽  
Vol 11 (2) ◽  
pp. 115-133 ◽  
Author(s):  
C. Elsässer ◽  
D. Wagenbach ◽  
I. Levin ◽  
A. Stanzick ◽  
M. Christl ◽  
...  

Abstract. 10Be ice core measurements are an important tool for paleoclimate research, e.g., allowing for the reconstruction of past solar activity or changes in the geomagnetic dipole field. However, especially on multi-millennial timescales, the share of production and climate-induced variations of respective 10Be ice core records is still up for debate. Here we present the first quantitative climatological model of the 10Be ice concentration up to the glacial–interglacial timescale. The model approach is composed of (i) a coarse resolution global atmospheric transport model and (ii) a local 10Be air–firn transfer model. Extensive global-scale observational data of short-lived radionuclides as well as new polar 10Be snow-pit measurements are used for model calibration and validation. Being specifically configured for 10Be in polar ice, this tool thus allows for a straightforward investigation of production- and non-production-related modulation of this nuclide. We find that the polar 10Be ice concentration does not immediately record the globally mixed cosmogenic production signal. Using geomagnetic modulation and revised Greenland snow accumulation rate changes as model input, we simulate the observed Greenland Summit (GRIP and GISP2) 10Be ice core records over the last 75 kyr (on the GICC05modelext timescale). We show that our basic model is capable of reproducing the largest portion of the observed 10Be changes. However, model–measurement differences exhibit multi-millennial trends (differences up to 87% in case of normalized to the Holocene records) which call for closer investigation. Focusing on the (12–37) b2k (before the year AD 2000) period, mean model–measurement differences of 30% cannot be attributed to production changes. However, unconsidered climate-induced changes could likely explain the model–measurement mismatch. In fact, the 10Be ice concentration is very sensitive to snow accumulation changes. Here the reconstructed Greenland Summit (GRIP) snow accumulation rate record would require revision of +28% to solely account for the (12–37) b2k model–measurement differences.


2004 ◽  
Vol 39 ◽  
pp. 214-218 ◽  
Author(s):  
Gordon S. Hamilton

AbstractSnow-accumulation rates are known to be sensitive to local changes in ice-sheet surface slope because of the effect of katabatic winds. These topographic effects can be preserved in ice cores that are collected at non-ice-divide locations. The trajectory of an ice-core site at South Pole is reconstructed using measurements of ice-sheet motion to show that snow was probably deposited at places of different surface slope during the past 1000 years. Recent accumulation rates, derived from shallow firn cores, vary along this trajectory according to surface topography, so that on a relatively steep flank mean annual accumulation is ∼18% smaller than on a nearby topographic depression. These modern accumulation rates are used to reinterpret the cause of accumulation rate variability with time in the long ice-core record as an ice-dynamics effect and not a climate-change signal. The results highlight the importance of conducting ancillary ice-dynamics measurements as part of ice-coring programs so that topographic effects can be deconvolved from potential climate signals.


1999 ◽  
Vol 29 ◽  
pp. 106-112 ◽  
Author(s):  
B. Stenni ◽  
R. Caprioli ◽  
L. Cimino ◽  
C. Cremisini ◽  
O. Flora ◽  
...  

AbstractA 42.2 m firn core was collected at the Hercules Névé plateau (100 km inland and 2960 m a.s.L), northern Victoria Land, during the 1994-95 Italian Antarctic Expedition. Chemical (Cl–, NO3–, SO42–’; δ18O δ18O δ18O; m-2a-1) and isotope (5180) analyses were performed to evaluate the snow-accumulation rate at this site. Tritium measurements were performed in the upper part of the core to narrow down the dating of the core.High nssSO42- concentrations seem to be related to some explosive volcanic eruptions, such as Tambora (AD 1815) and the preceding event called "Unknown" (AD 1809), Coseguina (AD 1835), Makjan (AD 1861), Krakatoa (AD 1883) and Tarawera (AD 1886).A comparison between the seasonal variations observed in the isotope and chemical profiles was carried out in order to reduce the dating uncertainty, using the tritium and the volcanic markers as time constraints. A deposition period of 222 years was determined.The 3 year smoothed «5180 profile shows more negative values from the bottom of the core (dated AD 1770) throughout the 19th century, suggesting "cooler" conditions, in agreement with other East Antarctic ice-core records! Subsequently, a general increase in δ180-values is observed.The calculated average snow-accumulation rates between the above-mentioned time markers are 111-129 kg m-2a-1.


2020 ◽  
Vol 20 (9) ◽  
pp. 5861-5885 ◽  
Author(s):  
V. Holly L. Winton ◽  
Alison Ming ◽  
Nicolas Caillon ◽  
Lisa Hauge ◽  
Anna E. Jones ◽  
...  

Abstract. The nitrogen stable isotopic composition in nitrate (δ15N-NO3-) measured in ice cores from low-snow-accumulation regions in East Antarctica has the potential to provide constraints on past ultraviolet (UV) radiation and thereby total column ozone (TCO) due to the sensitivity of nitrate (NO3-) photolysis to UV radiation. However, understanding the transfer of reactive nitrogen at the air–snow interface in polar regions is paramount for the interpretation of ice core records of δ15N-NO3- and NO3- mass concentrations. As NO3- undergoes a number of post-depositional processes before it is archived in ice cores, site-specific observations of δ15N-NO3- and air–snow transfer modelling are necessary to understand and quantify the complex photochemical processes at play. As part of the Isotopic Constraints on Past Ozone Layer Thickness in Polar Ice (ISOL-ICE) project, we report new measurements of NO3- mass concentration and δ15N-NO3- in the atmosphere, skin layer (operationally defined as the top 5 mm of the snowpack), and snow pit depth profiles at Kohnen Station, Dronning Maud Land (DML), Antarctica. We compare the results to previous studies and new data, presented here, from Dome C on the East Antarctic Plateau. Additionally, we apply the conceptual 1D model of TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow (TRANSITS) to assess the impact of NO3- recycling on δ15N-NO3- and NO3- mass concentrations archived in snow and firn. We find clear evidence of NO3- photolysis at DML and confirmation of previous theoretical, field, and laboratory studies that UV photolysis is driving NO3- recycling and redistribution at DML. Firstly, strong denitrification of the snowpack is observed through the δ15N-NO3- signature, which evolves from the enriched snowpack (−3 ‰ to 100 ‰), to the skin layer (−20 ‰ to 3 ‰), to the depleted atmosphere (−50 ‰ to −20 ‰), corresponding to mass loss of NO3- from the snowpack. Based on the TRANSITS model, we find that NO3- is recycled two times, on average, before it is archived in the snowpack below 15 cm and within 0.75 years (i.e. below the photic zone). Mean annual archived δ15N-NO3- and NO3- mass concentration values are 50 ‰ and 60 ng g−1, respectively, at the DML site. We report an e-folding depth (light attenuation) of 2–5 cm for the DML site, which is considerably lower than Dome C. A reduced photolytic loss of NO3- at DML results in less enrichment of δ15N-NO3- than at Dome C mainly due to the shallower e-folding depth but also due to the higher snow accumulation rate based on TRANSITS-modelled sensitivities. Even at a relatively low snow accumulation rate of 6 cm yr−1 (water equivalent; w.e.), the snow accumulation rate at DML is great enough to preserve the seasonal cycle of NO3- mass concentration and δ15N-NO3-, in contrast to Dome C where the depth profiles are smoothed due to longer exposure of surface snow layers to incoming UV radiation before burial. TRANSITS sensitivity analysis of δ15N-NO3- at DML highlights that the dominant factors controlling the archived δ15N-NO3- signature are the e-folding depth and snow accumulation rate, with a smaller role from changes in the snowfall timing and TCO. Mean TRANSITS model sensitivities of archived δ15N-NO3- at the DML site are 100 ‰ for an e-folding depth change of 8 cm, 110 ‰ for an annual snow accumulation rate change of 8.5 cm yr−1 w.e., 10 ‰ for a change in the dominant snow deposition season between winter and summer, and 10 ‰ for a TCO change of 100 DU (Dobson units). Here we set the framework for the interpretation of a 1000-year ice core record of δ15N-NO3- from DML. Ice core δ15N-NO3- records at DML will be less sensitive to changes in UV than at Dome C; however the higher snow accumulation rate and more accurate dating at DML allows for higher-resolution δ15N-NO3- records.


2004 ◽  
Vol 50 (169) ◽  
pp. 279-291 ◽  
Author(s):  
Coen M. Hofstede ◽  
S.W van de Wal Roderik ◽  
Karsten A. Kaspers ◽  
Michiel R. van den Broeke ◽  
Lars Karlöf ◽  
...  

AbstractThis paper presents an overview of firn accumulation in Dronning Maud Land (DML), Antarctica, over the past 1000 years. It is based on a chronology established with dated volcanogenic horizons detected by dielectric profiling of six medium-length firn cores. In 1998 the British Antarctic Survey retrieved a medium-length firn core from western DML. During the Nordic EPICA (European Project for Ice Coring in Antarctica) traverse of 2000/01, a 160 m long firn core was drilled in eastern DML. Together with previously published data from four other medium-length ice cores from the area, these cores yield 50 possible volcanogenic horizons. All six firn cores cover a mutual time record until the 29th eruption. This overlapping period represents a period of approximately 1000 years, with mean values ranging between 43 and 71 mm w.e. The cores revealed no significant trend in snow accumulation. Running averages over 50 years, averaged over the six cores, indicate temporal variations of5%. All cores display evidence of a minimum in the mean annual firn accumulation rate around AD 1500 and maxima around AD 1400 and 1800. The mean increase over the early 20th century was the strongest increase, but the absolute accumulation rate was not much higher than around AD 1400. In eastern DML a 13% increase is observed for the second half of the 20th century.


2002 ◽  
Vol 48 (162) ◽  
pp. 417-424 ◽  
Author(s):  
Anja Pälli ◽  
Jack C. Kohler ◽  
Elisabeth Isaksson ◽  
John C. Moore ◽  
Jean Francis Pinglot ◽  
...  

AbstractA 50 MHz ground-penetrating radar was used to detect horizontal layers in the snowpack along a longitudinal profile on Nordenskjöldbreen, a Svalbard glacier. The profile passed two shallow and one deep ice-core sites. Two internal radar reflection layers were dated using parameters measured in the deep core. Radar travel times were converted to water equivalent, yielding snow-accumulation rates along the profile for three time periods: 1986–99, 1963–99 and 1963–86. The results show 40–60% spatial variability in snow accumulation over short distances along the profile. The average annual accumulation rate for 1986–99 was found to be about 12% higher than for the period 1963–86, which indicates increased accumulation in the late 1980s and 1990s.


2004 ◽  
Vol 39 ◽  
pp. 467-472 ◽  
Author(s):  
Morimasa Takata ◽  
Yoshinori Iizuka ◽  
Takeo Hondoh ◽  
Shuji Fujita ◽  
Yoshiyuki Fujii ◽  
...  

AbstractLong-term changes of snow-accumulation rate in Antarctica are a major uncertainty in our understanding of past climate. Because the visible strata in polar ice are due to variations in the sizes and concentrations of air inclusions and microparticles, the scattered light intensity from an ice core yields valuable information on the stratification, which is likely to provide estimates of the annual accumulation rates. Identification of each layer is therefore necessary, and we developed an optical scanner apparatus to record detailed visible strata of ice cores. The apparatus records the two-dimensional distribution of light-scattering intensity along ice-core samples and produces an image of the whole ice-core sample by an image analysis process. These images showed that ice from Dome Fuji ice core contained a large number of layers. Volcanic layers were also well identified. We processed the scattering intensity on the enhanced intensity images to produce an intensity profile. This profile showed that the period of the intensity variations is consistent with a core-dating model applied to the Dome Fuji ice core. We also found that the intensity peaks are closely correlated to peaks in Ca2+ ion concentrations. Thus, our scanning method is a promising approach to measuring annual-layer thickness and, as a result, may be used to infer past accumulation rates in Antarctica.


Sign in / Sign up

Export Citation Format

Share Document