scholarly journals Flotation and retreat of a lake-calving terminus, Mendenhall Glacier, southeast Alaska, USA

2007 ◽  
Vol 53 (181) ◽  
pp. 211-224 ◽  
Author(s):  
Eleanor S. Boyce ◽  
Roman J. Motyka ◽  
Martin Truffer

AbstractMendenhall Glacier is a lake-calving glacier in southeastern Alaska, USA, that is experiencing substantial thinning and increasingly rapid recession. Long-term mass wastage linked to climatic trends is responsible for thinning of the lower glacier and leaving the terminus vulnerable to buoyancy-driven calving and accelerated retreat. Bedrock topography has played a major role in stabilizing the terminus between periods of rapid calving and retreat. Lake-terminating glaciers form a population distinct from both tidewater glaciers and polar ice tongues, with some similarities to both groups. Lacustrine termini experience fewer perturbations (e.g. tidal flexure, high subaqueous melt rates) and are therefore inherently more stable than tidewater termini. At Mendenhall, rapid thinning and simultaneous retreat into a deeper basin led to flotation conditions along approximately 50% of the calving front. This unstable terminus geometry lasted for approximately 2 years and culminated in large-scale calving and terminus collapse during summer 2004. Buoyancy-driven calving events and terminus break-up can result from small, rapidly applied perturbations in lake level.

2018 ◽  
Vol 14 (12) ◽  
pp. 1915-1960 ◽  
Author(s):  
Rudolf Brázdil ◽  
Andrea Kiss ◽  
Jürg Luterbacher ◽  
David J. Nash ◽  
Ladislava Řezníčková

Abstract. The use of documentary evidence to investigate past climatic trends and events has become a recognised approach in recent decades. This contribution presents the state of the art in its application to droughts. The range of documentary evidence is very wide, including general annals, chronicles, memoirs and diaries kept by missionaries, travellers and those specifically interested in the weather; records kept by administrators tasked with keeping accounts and other financial and economic records; legal-administrative evidence; religious sources; letters; songs; newspapers and journals; pictographic evidence; chronograms; epigraphic evidence; early instrumental observations; society commentaries; and compilations and books. These are available from many parts of the world. This variety of documentary information is evaluated with respect to the reconstruction of hydroclimatic conditions (precipitation, drought frequency and drought indices). Documentary-based drought reconstructions are then addressed in terms of long-term spatio-temporal fluctuations, major drought events, relationships with external forcing and large-scale climate drivers, socio-economic impacts and human responses. Documentary-based drought series are also considered from the viewpoint of spatio-temporal variability for certain continents, and their employment together with hydroclimate reconstructions from other proxies (in particular tree rings) is discussed. Finally, conclusions are drawn, and challenges for the future use of documentary evidence in the study of droughts are presented.


2001 ◽  
Vol 13 (3) ◽  
pp. 302-311 ◽  
Author(s):  
Jens-Ove Näslund

Large-scale bedrock morphology and relief of two key areas, the Jutulsessen Nunatak and the Jutulstraumen ice stream are used to discuss glascial history and landscape development in western and central Dronning Maud Land, Antarctica. Two main landform components were identified: well-defined summit plateau surfaces and a typical alpine glacial landscape. The flat, high-elevation plateau surfaces previously were part of one or several continuous regional planation surfaces. In western Dronning Maud Land, overlying cover rocks of late Palaeozoic age show that the planation surface(s) existed in the early Permian, prior to the break-up of Gondwana. A well-develoment escarpment, a mega landform typical for passive continental margins, bounds the palaeosurface remnants to the north for a distance of at least 700 km. The Cenozoic glacial landscape, incised in the palaeosurface and escarpment, is exemplified by Jutulsessen Nunatak, where a c. 1.2 km deep glacial valley system is developed. However, the prominent Penck-Jutul Trough represents some of the deepest dissection of the palaeosurface. This originally tectonic feature is today occupied by the Jutulstraumen ice stream. New topographic data show that the bed of the Penck-Jutul Trough is situated 1.9±1.1 km below sea level, and that the total landscape relief is at least 4.2 km. Today's relief is a result of several processes, including tectonic faulting, subaerial weathering, fluvial erosion, and glacial erosion. It is probable that erosion by ice streams has deepened the tectonic troughs of Dronning Maud Land since the onset of ice sheet glaciation in the Oligocene, and continues today. An attempt is made to identify major events in the long-term landscape development of Dronning Maud Land, since the break-up of the Gondwana continent.


2021 ◽  
Vol 15 (5) ◽  
pp. 2333-2356
Author(s):  
Jan Henning L'Abée-Lund ◽  
Leif Asbjørn Vøllestad ◽  
John Edward Brittain ◽  
Ånund Sigurd Kvambekk ◽  
Tord Solvang

Abstract. Long-term observations of ice phenology in lakes are ideal for studying climatic variation in time and space. We used a large set of observations from 1890 to 2020 of the timing of freeze-up and break-up, and the length of ice-free season, for 101 Norwegian lakes to elucidate variation in ice phenology across time and space. The dataset of Norwegian lakes is unusual, covering considerable variation in elevation (4–1401 m a.s.l.) and climate (from oceanic to continental) within a substantial latitudinal and longitudinal gradient (58.2–69.9∘ N, 4.9–30.2∘ E). The average date of ice break-up occurred later in spring with increasing elevation, latitude and longitude. The average date of freeze-up and the length of the ice-free period decreased significantly with elevation and longitude. No correlation with distance from the ocean was detected, although the geographical gradients were related to regional climate due to adiabatic processes (elevation), radiation (latitude) and the degree of continentality (longitude). There was a significant lake surface area effect as small lakes froze up earlier due to less volume. There was also a significant trend that lakes were completely frozen over later in the autumn in recent years. After accounting for the effect of long-term trends in the large-scale North Atlantic Oscillation (NAO) index, a significant but weak trend over time for earlier ice break-up was detected. An analysis of different time periods revealed significant and accelerating trends for earlier break-up, later freeze-up and completely frozen lakes after 1991. Moreover, the trend for a longer ice-free period also accelerated during this period, although not significantly. An understanding of the relationship between ice phenology and geographical parameters is a prerequisite for predicting the potential future consequences of climate change on ice phenology. Changes in ice phenology will have consequences for the behaviour and life cycle dynamics of the aquatic biota.


2021 ◽  
Author(s):  
Jan Henning L’Abée-Lund ◽  
Leif Asbjørn Vøllestad ◽  
John Edward Brittain ◽  
Ånund Sigurd Kvambekk ◽  
Tord Solvang

Abstract. Long-term observations of ice phenology in lakes are ideal for studying climatic variation in time and space. We used a large set of observations from 1890 to 2020 of the timing of freeze-up and break-up, and the length of ice-free season, for 101 Norwegian lakes to elucidate variation in ice phenology across time and space. The dataset of Norwegian lakes is unusual, covering considerable variation in altitude (4–1401 m a.s.l.) and climate (from oceanic to continental) within a substantial latitudinal and longitudinal gradient (58.2–69.9° N; 4.9–30.2° E). The average date of ice break-up occurred later in spring with increasing altitude, latitude and longitude. The average date of freeze-up and the length of the ice-free period decreased significantly with altitude and longitude. No correlation with distance from the ocean was detected, although the geographical gradients were related to regional climate due to adiabatic processes (altitude), solar radian (latitude) and the degree of continentality (longitude). There was a significant lake area effect as small lakes froze-up earlier due to less volume. There was also a significant trend that lakes were completely frozen over later in the autumn in recent years. After accounting for the effect of long-term trends in the large-scale NAO index, a significant but weak trend over time for earlier ice break-up was detected. An analysis of different time periods revealed significant and accelerating trends for earlier break-up, later freeze-up and completely frozen lakes after 1991. Moreover, the trend for a longer ice-free period also accelerated during this period, although not significant. An understanding of the relationship between ice phenology and geographical parameters is a prerequisite for predicting the potential future consequences of climate change on ice phenology. Changes in ice phenology will have consequences for the behaviour and life cycle dynamics of the aquatic biota.


The Wealden cyclothems in the Weald are distinct from other sedimentary cycles so far reported. Their re-interpretation is based on recent sedimentological studies of analogous modern environments. The largely arenaceous lower part of each of the two megacyclothems in the Hastings Beds records the several environments of a growing and subsiding delta pile. Levee, crevasse and backswamp alluvium, pond-and-mere muds, channel sediments, shoreface sands, distributary mouth-bar and pro-delta deposits, etc., seem to be recognizable. The deltas advanced into lakes with fairly steady or falling water levels. Rates of deposition, up to 1 cm per 5 to 6 years, are suggested by certain of the fine-grained shoreface sands. ‘Classical' rather than birdfoot types of delta seem to be represented. The exposed portions were surrounded by extensive shallow water platforms. No major breaks of underwater slope are detectable: large-scale foresets are probably absent. The upper argillaceous parts of the megacyclothems, together with the back-delta (northern) portions of the arenaceous members immediately benath , are now regarded as having been formed during times of rising lake level. The clays and their basal beds are transgressive delta-front and pro-delta lakesediments, while the back-delta sands and silts below seem to have been valley-plug, levee and crevasse alluvium formed earlier behind the retreating coast in direct response to the rising base level. Alluvium also constitutes the more argillaceous parts of certain minor cyclothems of a different type. Extensive horsetail reedswamp grew offshore during times of retreat. The reeds were not able to establish themselves everywhere during periods of deltaic advance, owing to rapid silting, more frequent scour and the greater depth of suitable bottom sediments. Bigger plants as well as scattered horsetails grew on the surfaces of the deltas. Estuaries-of-inundation must have characterized these periods. The first major (Wadhurst) transgression advanced quickly, the reed beds in any one place lasting only a few years. Birdfoot deltas may have formed during its early stages for a short while. Close lithological, faunal, floral and petrological similarities between the cyclothems show that the same changes of environment were repeated several times. Probably the major fluctuations of lake level were in part relative only, being due either to changes in the rate of subsidence or to repeated river diversions causing the periodic abandonment of deltas and their consequent inundation. But, at certain horizons, continuity of deposition between the Wealden of Sussex and that of northern France is indicated by the petrology of the detritus. Hence the long-term fluctuations in lake level were probably also due in part to distant movements of the sea back and forth across the Paris basin. These in turn would have influenced channel ‘fixing’ and abandonment in the English alluvial plain. Short-term fluctuations of lake level were numerous. Some, near the base of the Wealden, may have been tidal in origin. Others took place mostly during times of deltaic advance. Several lines of evidence suggest the existence of well-marked seasons. Fundamental changes occurred during Weald Clay times, when the Wealden environments gradually coalesced and became transformed into a brackish arm of the advancing sea.


2018 ◽  
Vol 10 (1) ◽  
pp. 391-404 ◽  
Author(s):  
Katalin Takács ◽  
Zoltán Kern ◽  
László Pásztor

Abstract. A dataset of annual freshwater ice phenology was compiled for the largest river (Danube) and the largest lake (Lake Balaton) in eastern–central Europe, extending regular river and lake ice monitoring data through the use of historical observations and documentary records dating back to AD 1774 and AD 1885, respectively. What becomes clear is that the dates of the first appearance of ice and freeze-up have shifted, arriving 12–30 and 4–13 days later, respectively, per 100 years. Break-up and ice-off have shifted to earlier dates by 7–13 and 9–27 days/100 years, except on Lake Balaton, where the date of break-up has not changed significantly. The datasets represent a resource for (paleo)climatological research thanks to the strong, physically determined link between water and air temperature and the occurrence of freshwater ice phenomena. The derived centennial records of freshwater cryophenology for the Danube and Balaton are readily available for detailed analysis of the temporal trends, large-scale spatial comparison, or other climatological purposes. The derived dataset is publicly available via PANGAEA at https://doi.org/10.1594/PANGAEA.881056.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


1967 ◽  
Vol 06 (01) ◽  
pp. 8-14 ◽  
Author(s):  
M. F. Collen

The utilization of an automated multitest laboratory as a data acquisition center and of a computer for trie data processing and analysis permits large scale preventive medical research previously not feasible. Normal test values are easily generated for the particular population studied. Long-term epidemiological research on large numbers of persons becomes practical. It is our belief that the advent of automation and computers has introduced a new era of preventive medicine.


Sign in / Sign up

Export Citation Format

Share Document