scholarly journals Long-term ice phenology records from eastern–central Europe

2018 ◽  
Vol 10 (1) ◽  
pp. 391-404 ◽  
Author(s):  
Katalin Takács ◽  
Zoltán Kern ◽  
László Pásztor

Abstract. A dataset of annual freshwater ice phenology was compiled for the largest river (Danube) and the largest lake (Lake Balaton) in eastern–central Europe, extending regular river and lake ice monitoring data through the use of historical observations and documentary records dating back to AD 1774 and AD 1885, respectively. What becomes clear is that the dates of the first appearance of ice and freeze-up have shifted, arriving 12–30 and 4–13 days later, respectively, per 100 years. Break-up and ice-off have shifted to earlier dates by 7–13 and 9–27 days/100 years, except on Lake Balaton, where the date of break-up has not changed significantly. The datasets represent a resource for (paleo)climatological research thanks to the strong, physically determined link between water and air temperature and the occurrence of freshwater ice phenomena. The derived centennial records of freshwater cryophenology for the Danube and Balaton are readily available for detailed analysis of the temporal trends, large-scale spatial comparison, or other climatological purposes. The derived dataset is publicly available via PANGAEA at https://doi.org/10.1594/PANGAEA.881056.

2017 ◽  
Author(s):  
Katalin Takács ◽  
Zoltán Kern ◽  
László Pásztor

Abstract. A data set of annual freshwater ice phenology was compiled for the largest river (Danube) and the largest lake (Lake Balaton) in East Central Europe, extending regular river and lake ice monitoring data through the use of historical observations and documentary records dating back to 1774 AD and 1885 AD, respectively. What becomes clear is that the dates of the first appearance of ice and freeze-up have shifted, arriving 12–30 and 4–13 days later respectively per 100 years. Break-up and ice-off have shifted to earlier dates by 7–13 and 9–27 days/100 years, except on Lake Balaton, where the date of break-up has not changed significantly. The data sets represent a great potential resource for (paleo)climatological research thanks to the strong, physically determined link between water and air temperature and the occurrence of freshwater ice phenomena. The derived centennial records of freshwater cryophenology for Danube and Balaton are readily available for detailed analysis of the temporal trends, large-scale spatial comparison or other climatological purposes. The derived dataset is publicly available via PANGAEA at https://doi.org/10.1594/PANGAEA.881056.


2021 ◽  
Vol 15 (5) ◽  
pp. 2333-2356
Author(s):  
Jan Henning L'Abée-Lund ◽  
Leif Asbjørn Vøllestad ◽  
John Edward Brittain ◽  
Ånund Sigurd Kvambekk ◽  
Tord Solvang

Abstract. Long-term observations of ice phenology in lakes are ideal for studying climatic variation in time and space. We used a large set of observations from 1890 to 2020 of the timing of freeze-up and break-up, and the length of ice-free season, for 101 Norwegian lakes to elucidate variation in ice phenology across time and space. The dataset of Norwegian lakes is unusual, covering considerable variation in elevation (4–1401 m a.s.l.) and climate (from oceanic to continental) within a substantial latitudinal and longitudinal gradient (58.2–69.9∘ N, 4.9–30.2∘ E). The average date of ice break-up occurred later in spring with increasing elevation, latitude and longitude. The average date of freeze-up and the length of the ice-free period decreased significantly with elevation and longitude. No correlation with distance from the ocean was detected, although the geographical gradients were related to regional climate due to adiabatic processes (elevation), radiation (latitude) and the degree of continentality (longitude). There was a significant lake surface area effect as small lakes froze up earlier due to less volume. There was also a significant trend that lakes were completely frozen over later in the autumn in recent years. After accounting for the effect of long-term trends in the large-scale North Atlantic Oscillation (NAO) index, a significant but weak trend over time for earlier ice break-up was detected. An analysis of different time periods revealed significant and accelerating trends for earlier break-up, later freeze-up and completely frozen lakes after 1991. Moreover, the trend for a longer ice-free period also accelerated during this period, although not significantly. An understanding of the relationship between ice phenology and geographical parameters is a prerequisite for predicting the potential future consequences of climate change on ice phenology. Changes in ice phenology will have consequences for the behaviour and life cycle dynamics of the aquatic biota.


2021 ◽  
Author(s):  
Jan Henning L’Abée-Lund ◽  
Leif Asbjørn Vøllestad ◽  
John Edward Brittain ◽  
Ånund Sigurd Kvambekk ◽  
Tord Solvang

Abstract. Long-term observations of ice phenology in lakes are ideal for studying climatic variation in time and space. We used a large set of observations from 1890 to 2020 of the timing of freeze-up and break-up, and the length of ice-free season, for 101 Norwegian lakes to elucidate variation in ice phenology across time and space. The dataset of Norwegian lakes is unusual, covering considerable variation in altitude (4–1401 m a.s.l.) and climate (from oceanic to continental) within a substantial latitudinal and longitudinal gradient (58.2–69.9° N; 4.9–30.2° E). The average date of ice break-up occurred later in spring with increasing altitude, latitude and longitude. The average date of freeze-up and the length of the ice-free period decreased significantly with altitude and longitude. No correlation with distance from the ocean was detected, although the geographical gradients were related to regional climate due to adiabatic processes (altitude), solar radian (latitude) and the degree of continentality (longitude). There was a significant lake area effect as small lakes froze-up earlier due to less volume. There was also a significant trend that lakes were completely frozen over later in the autumn in recent years. After accounting for the effect of long-term trends in the large-scale NAO index, a significant but weak trend over time for earlier ice break-up was detected. An analysis of different time periods revealed significant and accelerating trends for earlier break-up, later freeze-up and completely frozen lakes after 1991. Moreover, the trend for a longer ice-free period also accelerated during this period, although not significant. An understanding of the relationship between ice phenology and geographical parameters is a prerequisite for predicting the potential future consequences of climate change on ice phenology. Changes in ice phenology will have consequences for the behaviour and life cycle dynamics of the aquatic biota.


2001 ◽  
Vol 13 (3) ◽  
pp. 302-311 ◽  
Author(s):  
Jens-Ove Näslund

Large-scale bedrock morphology and relief of two key areas, the Jutulsessen Nunatak and the Jutulstraumen ice stream are used to discuss glascial history and landscape development in western and central Dronning Maud Land, Antarctica. Two main landform components were identified: well-defined summit plateau surfaces and a typical alpine glacial landscape. The flat, high-elevation plateau surfaces previously were part of one or several continuous regional planation surfaces. In western Dronning Maud Land, overlying cover rocks of late Palaeozoic age show that the planation surface(s) existed in the early Permian, prior to the break-up of Gondwana. A well-develoment escarpment, a mega landform typical for passive continental margins, bounds the palaeosurface remnants to the north for a distance of at least 700 km. The Cenozoic glacial landscape, incised in the palaeosurface and escarpment, is exemplified by Jutulsessen Nunatak, where a c. 1.2 km deep glacial valley system is developed. However, the prominent Penck-Jutul Trough represents some of the deepest dissection of the palaeosurface. This originally tectonic feature is today occupied by the Jutulstraumen ice stream. New topographic data show that the bed of the Penck-Jutul Trough is situated 1.9±1.1 km below sea level, and that the total landscape relief is at least 4.2 km. Today's relief is a result of several processes, including tectonic faulting, subaerial weathering, fluvial erosion, and glacial erosion. It is probable that erosion by ice streams has deepened the tectonic troughs of Dronning Maud Land since the onset of ice sheet glaciation in the Oligocene, and continues today. An attempt is made to identify major events in the long-term landscape development of Dronning Maud Land, since the break-up of the Gondwana continent.


2021 ◽  
Author(s):  
Yubao Qiu ◽  
Xingxing Wang ◽  
Matti Leppäranta ◽  
Bin Cheng ◽  
Yixiao Zhang

<p>Lake-ice phenology is an essential indicator of climate change impact for different regions (Livingstone, 1997; Duguay, 2010), which helps understand the regional characters of synchrony and asynchrony. The observation of lake ice phenology includes ground observation and remote sensing inversion. Although some lakes have been observed for hundreds of years, due to the limitations of the observation station and the experience of the observers, ground observations cannot obtain the lake ice phenology of the entire lake. Remote sensing has been used for the past 40 years, in particular, has provided data covering the high mountain and high latitude regions, where the environment is harsh and ground observations are lacking. Remote sensing also provides a unified data source and monitoring standard, and the possibility of monitoring changes in lake ice in different regions and making comparisons between them. The existing remote sensing retrieval products mainly cover North America and Europe, and data for Eurasia is lacking (Crétaux et al., 2020).</p><p>Based on the passive microwave, the lake ice phenology of 522 lakes in the northern hemisphere during 1978-2020 was obtained, including Freeze-Up Start (FUS), Freeze-Up End (FUE), Break-Up Start (BUS), Break-Up End (BUE), and Ice Cover Duration (ICD). The ICD is the duration from the FUS to the BUE, which can directly reflect the ice cover condition. At latitudes north of 60°N, the average of ICD is approximately 8-9 months in North America and 5-6 months in Eurasia. Limited by the spatial resolution of the passive microwave, lake ice monitoring is mainly in Northern Europe. Therefore, the average of ICD over Eurasia is shorter, while the ICD is more than 6 months for most lakes in Russia. After 2000, the ICD has shown a shrinking trend, except northeastern North America (southeast of the Hudson Bay) and the northern Tibetan Plateau. The reasons for the extension of ice cover duration need to be analyzed with parameters, such as temperature, the lake area, and lake depth, in the two regions.</p>


2000 ◽  
Vol 27 (5) ◽  
pp. 2815-2815
Author(s):  
S. E. Walsh ◽  
S. J. Vavrus ◽  
J. A. Foley ◽  
R. H. Wynne

2018 ◽  
Vol 31 (22) ◽  
pp. 9073-9086 ◽  
Author(s):  
Yong Liu ◽  
Huopo Chen ◽  
Huijun Wang ◽  
Yubao Qiu

The changing characteristics of lake ice phenology over the Tibetan Plateau (TP) are investigated using historical satellite retrieved datasets during 2002–15 in this study. The results indicate that the freezing process mainly starts in December, and the ice melting process generally occurs in April for most lakes. However, the changes in lake ice phenology have varied depending on the location in recent years, with delayed break-up dates and prolonged ice durations in the southern TP, but no consistent changes have occurred in the lakes in the northern TP. Further analysis presents a close connection between the variation in the lake ice break-up date/ice duration over the southern TP and the winter North Atlantic Oscillation (NAO). The positive NAO generally excites an anomalous wave activity that propagates southward from the North Atlantic to North Africa and, in turn, strengthens the African–Asian jet stream at its entrance. Because of the blocking effect of the TP, the enhanced westerly jet can be divided into two branches and the south branch flow can deepen the India–Myanmar trough, which further strengthens the anomalous cyclonic circulation and water vapor transport. Therefore, the increased water vapor transport from the northern Indian Ocean to the southern region of the TP can increase the snowfall over this region. The increased snow cover over the lake acts as an insulating layer and lowers the lake surface temperature in the following spring by means of snow–ice feedback activity, resulting in a delayed ice break-up date and the increased ice duration of the lakes over the southern TP in recent years.


2007 ◽  
Vol 53 (181) ◽  
pp. 211-224 ◽  
Author(s):  
Eleanor S. Boyce ◽  
Roman J. Motyka ◽  
Martin Truffer

AbstractMendenhall Glacier is a lake-calving glacier in southeastern Alaska, USA, that is experiencing substantial thinning and increasingly rapid recession. Long-term mass wastage linked to climatic trends is responsible for thinning of the lower glacier and leaving the terminus vulnerable to buoyancy-driven calving and accelerated retreat. Bedrock topography has played a major role in stabilizing the terminus between periods of rapid calving and retreat. Lake-terminating glaciers form a population distinct from both tidewater glaciers and polar ice tongues, with some similarities to both groups. Lacustrine termini experience fewer perturbations (e.g. tidal flexure, high subaqueous melt rates) and are therefore inherently more stable than tidewater termini. At Mendenhall, rapid thinning and simultaneous retreat into a deeper basin led to flotation conditions along approximately 50% of the calving front. This unstable terminus geometry lasted for approximately 2 years and culminated in large-scale calving and terminus collapse during summer 2004. Buoyancy-driven calving events and terminus break-up can result from small, rapidly applied perturbations in lake level.


2017 ◽  
Vol 17 (2) ◽  
pp. 61-70 ◽  
Author(s):  
Jacek Barańczuk ◽  
Elżbieta Bajkiewicz-Grabowska ◽  
Katarzyna Barańczuk ◽  
Wojciech Staszek

AbstractThe paper presents assessment results of the ice dynamics on Lake Raduńskie Górne (Upper Radunia Lake) based on long-term observations of the course of ice phenomena. Interannual changes in lake ice phenology parameters (freeze-onset, ice-on, freeze duration, melt-onset, permanent ice cover duration, ice-off, melt duration) in the years 1961–2010 are discussed. In addition, the ice cover thickness was taken into consideration. The analysed parameters of ice phenology were compared to each other as well as to the mean air and water temperatures of the winter half-year (November–April). The main periods of the ice regime of the lake have been determined and described. The permanent ice cover constitutes on average 79%, freeze-up period 13%, and break-up period 8% of the whole time of ice phenomena. It was shown that the weather parameters crucial for ice formation are the mean air and surface water temperatures. On Lake Raduńskie Górne the ice phenomena can only occur when mean air temperature in the winter half-year, at Borucino wheather station, is lower than 4.9°C, and water temperature (at a depth of 0.4 m) is lower than 5.7°C. In turn permanent ice cover is created when the mean air temperature of the winter half-year is lower than 3.9°C. The maximum and mean ice cover thickness on Lake Raduńskie Górne ranged, respectively, from 0.5 to 50 cm, and from 0.5 to 38.3 cm. These parameters were strongly positively correlated (r = 0.87–0.88, p <0.05) with the duration of the ice cover period.


2006 ◽  
Vol 37 (4-5) ◽  
pp. 347-363 ◽  
Author(s):  
Johanna Korhonen

The freeze-up and break-up records of almost ninety lakes, and ice thickness of about thirty lakes, were analysed in order to identify long-term changes in the ice regime in Finland. The longest time series of break-up and freeze-up of ice in lakes are available from the early 19th century, while the earliest ice thickness measurements started in the 1910s. The analysis showed that there is a significant change towards earlier ice break-up in Finland except in the very north from the late 19th century to the present time. There is also a significant trend towards later freeze-up and thus also towards a shorter ice cover duration for the longest time series. However, for most lakes, for which data are not available prior to 1900, there are no significant trends. The ice thickness seems to have increased over the last 40 years, although there are significant trends only in half of the investigated lakes and significant decrease in the maximum ice thickness was found in four lakes in southern Finland. The increased ice thickness is most likely due to heavy snow on the ice and production of snow ice.


Sign in / Sign up

Export Citation Format

Share Document