scholarly journals Glaciological studies on the King George Island ice cap, South Shetland Islands, Antarctica

1998 ◽  
Vol 27 ◽  
pp. 105-109 ◽  
Author(s):  
Wen Jiahong ◽  
Kang Jiancheng ◽  
Han Jiankang ◽  
Xie Zichu ◽  
Liu Leibao ◽  
...  

The King George Island ice cap, South Shetland Islands, Antarctica, was studied between 1985 and 1992. At the steady-state equilibrium-line altitude of the ice cap, the mean annual temperature is -3.6°C, the mean summer (December-February) temperature is 0°C and annual precipitation is 800 mm w.e. Precipitation increases rapidly with elevation, and annual accumulation rate at the Main Dome summit reaches 2480 mm a−1. Between 1985 and 1991 the equilibrium-line elevation averaged 140-150 m a.s.l. The ice cap has been in an overall stable state for the past 20 years, going from a weak negative to a small positive mass imbalance as increased precipitation outweighs the effects of rising temperatures. Temperatures at the bottom of the active layer over most of the accumulation area are close to 0°C, with colder temperatures down to -1.9°C in the ablation zone. Soluble impurities in the ice cap are mainly from marine sources, while undissolved mineral material amounts to only 15-54% of the total microparticle content.

2017 ◽  
Author(s):  
Ulrike Falk ◽  
Damián A. López ◽  
Adrián Silva-Busso

Abstract. The South Shetland Islands are located at the northern tip of the Antarctic Peninsula (AP). This region was subject to strong warming trends in the atmospheric surface layer. Surface air temperature increased about 3 K in 50 years, concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. The positive trend in surface air temperature has currently come to a halt. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to −1 K/100 m), and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns. The increased mesocyclonic activity during the winter time over the past decades in the study area results in intensified advection of warm, moist air with high temperatures and rain, and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. Its impact on winter accumulation results in the observed negative mass balance estimates. Six years of continuous glaciological measurements on mass balance stake transects as well as five years of climatological data time series are presented and a spatially distributed glacier energy balance melt model adapted and run based on these multi-year data sets. The glaciological surface mass balance model is generally in good agreement with observations, except for atmospheric conditions promoting snow drift by high wind speeds, turbulence-driven snow deposition and snow layer erosion by rain. No drift can be seen over the course of the 5-year model run period. The winter accumulation does not suffice to compensate for the high variability in summer ablation. The results are analysed to assess changes in melt water input to the coastal waters, specific glacier mass balance and the equilibrium line altitude. The Fourcade Glacier catchment drains into Potter cove, has an area of 23.6 km2 and is to 93.8 % glacierized. Annual discharge from Fourcade Glacier into Potter Cove is estimated to q = 25 ± 6 hm3 per year with the standard deviation of 8% annotating the high interannual variability. The average equilibrium line altitude (ELA) calculated from own glaciological observations on Fourcade Glacier over the time period 2010 to 2015 amounts to ELA = 260 ± 20 m. Published studies suggest rather stable conditions of slightly negative glacier mass balance until the mid 80's with an ELA of approx. 150 m. The calculated accumulation area ratio suggests dramatic changes in the future extent of the inland ice cap for the South Shetland Islands.


1995 ◽  
Vol 41 (138) ◽  
pp. 408-412 ◽  
Author(s):  
Ren Jiawen ◽  
Qin Dahe ◽  
J. R. Petit ◽  
J. Jouzel ◽  
Wang Wenti ◽  
...  

AbstractThe ice cap on Nelson Island in the South Shetland Islands, West Antarctica, was studied between 1985 and 1989. The ice cap has an average thickness of 120 m. it is temperate, exists under the sub-Antarctic maritime climate and almost completely covers the island. Owing to intense percolation of meltwater (and, to some extent, liquid precipitation), the snow-firn layer is in the soaked facies, with a firn-ice transition at a depth of 25-26 m at the summit. A force-balance model suggests that the ice is almost linearly viscous but has a high viscosity. The model further suggests that basal sliding makes a larger contribution to the ice movement than does ice deformation. From 1970 to 1988. the average accumulation rate was 120 kg m−2a−1at the centre, and between 1985 and 1989 the equilibrium-line elevation averaged 110m a.s.l. Analysis of chemical impurities in the surface snow suggests that the precipitation source is mainly local marine air masses and that human activity has already exerted a detectable influence on the local environment.


1960 ◽  
Vol 3 (27) ◽  
pp. 610-625
Author(s):  
G. Hattersley-Smith

AbstractGlaciological research on the ice cap to the north of Lake Hazen in northern Ellesmere Island was one of the main objectives of the Canadian I.G.Y. expedition to this area in 1957–1958. The method of nourishment of this ice cap and of Gilman Glacier, one of its southward-flowing outlets, was studied in pit and bore hole profiles above and below the equilibrium line, which was found at an elevation of about 1,200 m. Between an elevation of about 1,450 and 2,000 m. accumulation is by firn formation, while between about 1,280 and 1,450 m. interfingering of firn and superimposed ice occurs. At 1,800 m. the mean annual accumulation over the past twenty years is estimated as 12.8 g. cm.–2. On Gilman Glacier below the equilibrium line variations in density and crystal structure in an ice core to a depth of 25 m. are seen to depend on the proportion of firn to superimposed ice formed during accumulation. These variations correspond to past changes in the position of the equilibrium line. Englacial temperature measurements indicate a mean annual temperature of about –18.5° C. at an elevation of 1 ,040 m. A budget deficit for Gilman Glacier during two years of observations may be related to the increased summer melting of the last 20 years, deduced from pit studies at 1,800 m.


1982 ◽  
Vol 3 ◽  
pp. 233-238 ◽  
Author(s):  
Olav Orheim ◽  
L.S. Govorukha

This paper presents mass-balance results from Deception Island for 1968–69 to 1973–74, from King George Island for the balance years 1969–70 and 1970–71, and from Livingston Island from 1971–72 to 1973–74. The accumulation areas of all localities are in the soaked fades, with a firn/ice transition at King George Island at 12 to 20 m depth. Of the glaciers studied, only “Gl” on Deception Island terminates wholly on land and has a relatively large ablation area. The mass-balance curves are similar for King George Island and Livingston Island, with equilibrium lines at around 150 m elevation. “Gl“ on Deception Island has more negative summer balances, and the equilibrium line ranged from 275 to 370 m during the six balance years. Here, there were no years of positive net mass balance, and large negative net values during the 1970–71 to 1972–73 balance years. This resulted from a lowered albedo caused by ash from the August 1970 eruption. Ash layers from the Deception Island eruptions are also observed on Livingston Island and King George Island, where they form stratigraphic markers in the accumulation areas of the glaciers. Annual balance variations from 1957–58 to 1970–71, based on stratigraphic studies at Deception Island and King George Island, show good correlations, indicating that the variations reflect changes in regional climate.


1996 ◽  
Vol 23 ◽  
pp. 154-159 ◽  
Author(s):  
Wouter H. Knap ◽  
Johannes Oerlemans ◽  
Martin Cabée

A two-dimensional vertically integrated ice-flow model has been used to simulate the current state of the ice cap of King George Island, South Shetland Islands, Antarctica, as well as the sensitivity of this state to climate change. The model was forced by an energy-balance model that generates the specific mass balance from climatological input data of two research stations. It proved difficult to simulate-satisfactorily the entire geometry of the present-day ice cap. Nevertheless, it was possible to simulate a steady-state ice cap whose volume and areal extent approximate the (estimated) current situation. Several experiments have indicated that this state is highly sensitive to climate change. The model predicts that cooling by 1 K will increase the ice volume by 10% and warming by 1 K will decrease it by 36%. A 10% change in precipitation will alter the ice volume by less than 8%. Application of the IPCC-90 Business-as-Usual scenario leads to a 55% reduction in the ice volume by the year AD 2100, compared to the present-day situation. The response of the ice cap to warming is therefore totally different from the response of the main Antarctic ice sheet which is believed to gain mass by increasing temperatures.


2018 ◽  
Vol 12 (4) ◽  
pp. 1211-1232 ◽  
Author(s):  
Ulrike Falk ◽  
Damián A. López ◽  
Adrián Silva-Busso

Abstract. The South Shetland Islands are located at the northern tip of the Antarctic Peninsula (AP). This region was subject to strong warming trends in the atmospheric surface layer. Surface air temperature increased about 3 K in 50 years, concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. The positive trend in surface air temperature has currently come to a halt. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0K(100m)-1) and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns. The increased mesocyclonic activity during the wintertime over the past decades in the study area results in intensified advection of warm, moist air with high temperatures and rain and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. Its impact on winter accumulation results in the observed negative mass balance estimates. Six years of continuous glaciological measurements on mass balance stake transects as well as 5 years of climatological data time series are presented and a spatially distributed glacier energy balance melt model adapted and run based on these multi-year data sets. The glaciological surface mass balance model is generally in good agreement with observations, except for atmospheric conditions promoting snow drift by high wind speeds, turbulence-driven snow deposition and snow layer erosion by rain. No drift in the difference between simulated mass balance and mass balance measurements can be seen over the course of the 5-year model run period. The winter accumulation does not suffice to compensate for the high variability in summer ablation. The results are analysed to assess changes in meltwater input to the coastal waters, specific glacier mass balance and the equilibrium line altitude (ELA). The Fourcade Glacier catchment drains into Potter cove, has an area of 23.6 km2 and is glacierized to 93.8 %. Annual discharge from Fourcade Glacier into Potter Cove is estimated to q¯=25±6hm3yr-1 with the standard deviation of 8 % annotating the high interannual variability. The average ELA calculated from our own glaciological observations on Fourcade Glacier over the time period 2010 to 2015 amounts to 260±20 m. Published studies suggest rather stable conditions of slightly negative glacier mass balance until the mid-1980s with an ELA of approx. 150 m. The calculated accumulation area ratio suggests dramatic changes in the future extent of the inland ice cap for the South Shetland Islands.


2019 ◽  
Vol 9 (1) ◽  
pp. 1-12
Author(s):  
Zbyněk Engel ◽  
Filip Hrbáček ◽  
Kamil Láska ◽  
Daniel Nývlt ◽  
Zdeněk Stachoň

This study presents surface mass balance of two small glaciers on James Ross Island calculated using constant and zonally-variable conversion factors. The density of 500 and 900 kg·m–3 adopted for snow in the accumulation area and ice in the ablation area, respectively, provides lower mass balance values that better fit to the glaciological records from glaciers on Vega Island and South Shetland Islands. The difference between the cumulative surface mass balance values based on constant (1.23 ± 0.44 m w.e.) and zonally-variable density (0.57 ± 0.67 m w.e.) is higher for Whisky Glacier where a total mass gain was observed over the period 2009–2015. The cumulative surface mass balance values are 0.46 ± 0.36 and 0.11 ± 0.37 m w.e. for Davies Dome, which experienced lower mass gain over the same period. The conversion approach does not affect much the spatial distribution of surface mass balance on glaciers, equilibrium line altitude and accumulation-area ratio. The pattern of the surface mass balance is almost identical in the ablation zone and very similar in the accumulation zone, where the constant conversion factor yields higher surface mass balance values. The equilibrium line altitude and accumulation-area ratio determined for the investigated glaciers differ by less than 2m and 0.01, respectively. The annual changes of equilibrium line altitude and the mean values determined over the period 2009–2015 for Whisky Glacier (311 ± 16 m a.s.l.) and Davies Dome (393 ± 18 m a.s.l.) coincide with the values reported from Bahía del Diablo Glacier on Vega Island but differ from the glaciological records on South Shetland Islands.


Polar Record ◽  
2019 ◽  
Vol 55 (3) ◽  
pp. 177-188 ◽  
Author(s):  
Marc Oliva ◽  
Dermot Antoniades ◽  
Enrique Serrano ◽  
Santiago Giralt ◽  
Emma J. Liu ◽  
...  

AbstractBarton Peninsula is an ice-free area located in the southwest corner of King George Island (South Shetland Islands, Antarctica). Following the Last Glacial Maximum, several geomorphological features developed in newly exposed ice-free terrain and their distribution provide insights about past environmental evolution of the area. Three moraine systems are indicative of three main glacial phases within the long-term glacial retreat, which also favoured the development of numerous lakes. Five of these lakes were cored to understand in greater detail the pattern of deglaciation through the study of lacustrine records. Radiocarbon dates from basal lacustrine sediments enabled the reconstruction of the chronology of Holocene glacial retreat. Tephra layers present in lake sediments provided additional independent age constraints on environmental changes based on geochemical and geochronological correlation with Deception Island-derived tephra. Shrinking of the Collins Glacier exposed the southern coastal fringe of Barton Peninsula at 8 cal ky BP. After a period of relative stability during the mid-Holocene, the ice cap started retreating northwards after 3.7 cal ky BP, confining some glaciers within valleys as shown by moraine systems. Lake sediments confirm a period of relative glacial stability during the last 2.4 cal ky BP.


1984 ◽  
Vol 30 (104) ◽  
pp. 3-15 ◽  
Author(s):  
G. Holdsworth

AbstractA site situated close to the main divide of the Penny Ice Cap, Baffin Island was occupied in 1979 for the purpose of determining the suitability of this ice cap for providing proxy climatic data and other environmental time series for a span of 104a. A 20 m core was extracted and analysed for stable oxygen isotopes, tritium concentration, pH, electrolytic conductivity, major ion concentrations, and particulate concentration. An adjacent dedicated shallow core was analysed for pollen content to determine if a significant seasonal variation in the pollen rain existed. From these measurements, and from the observations made on the stratigraphic character of the core, the mean net accumulation rate over the approximately 30 year period covered by the core is found to be about 0.43 m water equivalent per year. This is in agreement with a single value determined 26 years earlier at a nearby site (Ward and Baird, 1954). The mean annual temperature in the bore hole was found to be close to −14.4° C, possibly some 2–5 deg warmer than the expected mean annual surface air temperature at the site. This difference is due to the expulsion of latent heat upon freezing of melt water at depth in the snow-pack which gives rise to the many ice layers observed in the core. The percentage thickness of ice layers per year may be correlated with summer temperatures.Total ice depths were measured using a 620 MHz radar echo-sounder. In the vicinity of the divide, over an area of 1 km2, the ice depths vary from about 460 to 515 m. These values compare favourably with values determined from an airborne radar depth-sounding flight carried out over the ice cap by a joint U.S.–Danish mission operating out of Søndre Strømfjord, Greenland. The data suggest that the ice-cap divide would be a worthwhile location to deep core drill with an expected useful coverage of at least the Holocene period.


Sign in / Sign up

Export Citation Format

Share Document