scholarly journals Development and application of a time-lapse photograph analysis method to investigate the link between tidewater glacier flow variations and supraglacial lake drainage events

2013 ◽  
Vol 59 (214) ◽  
pp. 287-302 ◽  
Author(s):  
Brad Danielson ◽  
Martin Sharp

AbstractMarine-terminating glaciers may experience seasonal and short-term flow variations, which can impact rates of ice flux through the glacier terminus. We explore the relationship between variability in the flow of a large tidewater glacier (Belcher Glacier, Nunavut, Canada), the seasonal cycle of surface meltwater production and the rapid drainage of supraglacial lakes. We demonstrate a novel method for analyzing time-lapse photography to quantify lake area change rates (a proxy for net filling and drainage rates) and develop a typology of lake drainage styles. GPS records of ice motion reveal four flow acceleration events which can be linked to lake drainage events discovered in the time-lapse photography. These events are superimposed on a longer pattern of velocity variation that is linked to seasonal variation in surface melting. At the terminus of the glacier, the ice displacement associated with the lake drainage events constitutes ∼10% of the seasonally accelerated displacement or 0.4% of the total annual ice displacement (336 m a−1). While the immediate ice response to these individual perturbations may be small, these drainage events may enhance overall seasonal acceleration by opening and/or sustaining meltwater conduits to the glacier bed.

2021 ◽  
Vol 15 (3) ◽  
pp. 1587-1606
Author(s):  
Corinne L. Benedek ◽  
Ian C. Willis

Abstract. Surface lakes on the Greenland Ice Sheet play a key role in its surface mass balance, hydrology and biogeochemistry. They often drain rapidly in the summer via hydrofracture, which delivers lake water to the ice sheet base over timescales of hours to days and then can allow meltwater to reach the base for the rest of the summer. Rapid lake drainage, therefore, influences subglacial drainage evolution; water pressures; ice flow; biogeochemical activity; and ultimately the delivery of water, sediments and nutrients to the ocean. It has generally been assumed that rapid lake drainage events are confined to the summer, as this is typically when observations are made using satellite optical imagery. Here we develop a method to quantify backscatter changes in satellite radar imagery, which we use to document the drainage of six different lakes during three winters (2014/15, 2015/16 and 2016/17) in fast-flowing parts of the Greenland Ice Sheet. Analysis of optical imagery from before and after the three winters supports the radar-based evidence for winter lake drainage events and also provides estimates of lake drainage volumes, which range between 0.000046 ± 0.000017 and 0.0200 ± 0.002817 km3. For three of the events, optical imagery allows repeat photoclinometry (shape from shading) calculations to be made showing mean vertical collapse of the lake surfaces ranging between 1.21 ± 1.61 and 7.25 ± 1.61 m and drainage volumes of 0.002 ± 0.002968 to 0.044 ± 0.009858 km3. For one of these three, time-stamped ArcticDEM strips allow for DEM differencing, which demonstrates a mean collapse depth of 2.17 ± 0.28 m across the lake area. The findings show that lake drainage can occur in the winter in the absence of active surface melt and notable ice flow acceleration, which may have important implications for subglacial hydrology and biogeochemical processes.


2015 ◽  
Vol 61 (225) ◽  
pp. 185-199 ◽  
Author(s):  
J. Kingslake ◽  
F. Ng ◽  
A. Sole

AbstractSupraglacial lakes can drain to the bed of ice sheets, affecting ice dynamics, or over their surface, relocating surface water. Focusing on surface drainage, we first discuss observations of lake drainage. In particular, for the first time, lakes are observed to drain >70 km across the Nivlisen ice shelf, East Antarctica. Inspired by these observations, we develop a model of lake drainage through a channel that incises into an ice-sheet surface by frictional heat dissipated in the flow. Modelled lake drainage can be stable or unstable. During stable drainage, the rate of lake-level drawdown exceeds the rate of channel incision, so discharge from the lake decreases with time; this can prevent the lake from emptying completely. During unstable drainage, discharge grows unstably with time and always empties the lake. Model lakes are more prone to drain unstably when the initial lake area, the lake input and the channel slope are larger. These parameters will vary during atmospheric-warming-induced ablation-area expansion, hence the mechanisms revealed by our analysis can influence the dynamic response of ice sheets to warming through their impact on surface-water routing and storage.


2018 ◽  
Author(s):  
Penelope How ◽  
Nicholas R. J. Hulton ◽  
Lynne Buie

Abstract. Terrestrial time-lapse photogrammetry is a rapidly growing method for deriving measurements from glacial environments because it provides high spatio-temporal resolution records of change. However, glacial photogrammetry toolboxes are limited currently. Without prior knowledge in photogrammetry and computer coding, they are used primarily to calculate ice flow velocities or to serve as qualitative records. PyTrx (available at https://github.com/PennyHow/PyTrx) is presented here as a Python-alternative toolbox to widen the range of photogrammetry toolboxes on offer to the glaciology community. The toolbox holds core photogrammetric functions for point seeding, feature-tracking, image registration, and georectification (using a planar projective transformation model). In addition, PyTrx facilitates areal and line measurements, which can be detected from imagery using either an automated or manual approach. Examples of PyTrx's applications are demonstrated using time-lapse imagery from Kronebreen and Tunabreen, two tidewater glaciers in Svalbard. Products from these applications include ice flow velocities, surface areas of supraglacial lakes and meltwater plumes, and glacier terminus profiles.


2013 ◽  
Vol 7 (4) ◽  
pp. 3543-3565 ◽  
Author(s):  
B. F. Morriss ◽  
R. L. Hawley ◽  
J. W. Chipman ◽  
L. C. Andrews ◽  
G. A. Catania ◽  
...  

Abstract. The rapid drainage of supraglacial lakes introduces large pulses of meltwater to the subglacial environment and creates moulins, surface-to-bed conduits for future melt. Introduction of water to the subglacial system has been shown to affect ice flow, and modeling suggests that variability in water supply and delivery to the subsurface play an important role in the development of the subglacial hydrologic system and its ability to enhance or mitigate ice flow. We developed a fully automated method for tracking meltwater and rapid drainages in 78 large, perennial lakes along an outlet glacier flow band in West Greenland from 2002 to 2011 using ETM+ and MODIS imagery. Results indicate interannual variability in maximum coverage and spatial evolution of total lake area. We identify 238 rapid drainage events, occurring most often at low and middle elevations during periods of net filling or peak lake coverage. We observe a general progression of both lake filling and draining from lower to higher elevations but note that the timing of filling onset, peak coverage, and dissipation are also variable. While lake coverage is sensitive to air temperature, warm years exhibit greater variability in both coverage evolution and rapid drainage. Mid elevation drainages in 2011 coincide with large surface velocity increases at nearby GPS sites, though the relationships between iceshed-scale dynamics and meltwater input are still unclear.


2013 ◽  
Vol 7 (6) ◽  
pp. 1869-1877 ◽  
Author(s):  
B. F. Morriss ◽  
R. L. Hawley ◽  
J. W. Chipman ◽  
L. C. Andrews ◽  
G. A. Catania ◽  
...  

Abstract. The rapid drainage of supraglacial lakes introduces large pulses of meltwater to the subglacial environment and creates moulins, surface-to-bed conduits for future melt. Introduction of water to the subglacial system has been shown to affect ice flow, and modeling suggests that variability in water supply and delivery to the subsurface play an important role in the development of the subglacial hydrologic system and its ability to enhance or mitigate ice flow. We developed a fully automated method for tracking meltwater and rapid drainages in large (> 0.125 km2) perennial lakes and applied it to a 10 yr time series of ETM+ and MODIS imagery of an outlet glacier flow band in West Greenland. Results indicate interannual variability in maximum coverage and spatial evolution of total lake area. We identify 238 rapid drainage events, occurring most often at low (< 900 m) and middle (900–1200 m) elevations during periods of net filling or peak lake coverage. We observe a general progression of both lake filling and draining from lower to higher elevations but note that the timing of filling onset, peak coverage, and dissipation are also variable. Lake coverage is sensitive to air temperature, and warm years exhibit greater variability in both coverage evolution and rapid drainage. Mid-elevation drainages in 2011 coincide with large surface velocity increases at nearby GPS sites, though the relationships between ice-shed-scale dynamics and meltwater input are still unclear.


2017 ◽  
Author(s):  
Penelope How ◽  
Douglas I. Benn ◽  
Nicholas R. J. Hulton ◽  
Bryn Hubbard ◽  
Adrian Luckman ◽  
...  

Abstract. Subglacial hydrological processes at tidewater glaciers remain poorly understood due to the difficulty in obtaining direct measurements and lack of empirical verification for modelling approaches. Here, we investigate the subglacial hydrology of Kronebreen, a fast-flowing tidewater glacier in Svalbard during the 2014 melt season. We combine observations of water pressure, supraglacial lake drainage, surface velocities and plume activity with modelled runoff and water routing to develop a conceptual model that thoroughly encapsulates subglacial drainage at a tidewater glacier. Simultaneous measurements suggest that an early-season episode of subglacial flushing took place during our observation period, and a stable efficient drainage system effectively transported this water through the north region of the glacier tongue. Drainage pathways through the central/southern region of the glacier tongue were disrupted throughout the following melt season. Periodic plume activity at the terminus seems to be a signal for modulated subglacial pulsing i.e. an internally-driven storage and release of subglacial meltwater. This storage is a key control on ice flow in the 2014 melt season. Evidence from this work, and previous studies, strongly suggests that long-term changes in ice flow at Kronebreen are controlled by the location of efficient/inefficient drainage and the position of regions where water is stored and evacuated from.


1953 ◽  
Vol s3-94 (28) ◽  
pp. 369-379
Author(s):  
M. M. SWANN

1. Developing eggs of the sea-urchin Psammechinus miliaris were subjected to carbon monoxide inhibition, which was controlled by changing from green to white light. The behaviour of the eggs was recorded by time-lapse photography. 2. If inhibition is applied before the eggs enter mitosis, their first cleavage is delayed by a time which is roughly equal to the period of the inhibition. 3. If the inhibition is applied when the cells have already entered mitosis, they complete mitosis and cleave with little or no delay, but their second cleavage is delayed by a time which is roughly equal to the period of the inhibition. 4. It is suggested that the necessary energy for the second mitosis and cleavage is being stored up during the first mitosis and cleavage, and that this energy store operates like a reservoir which is continually being filled but siphons out when it is full. Once the energy has siphoned out, it carries mitosis and cleavage through, even though the reservoir is not filling up because of carbon monoxide inhibition.


2015 ◽  
Vol 9 (2) ◽  
pp. 2597-2623 ◽  
Author(s):  
F. Paul

Abstract. Although animated images are very popular on the Internet, they have so far found only limited use for glaciological applications. With long time-series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable for a wide public. For this study animated image sequences were created from freely available image quick-looks of orthorectified Landsat scenes for four regions in the central Karakoram mountain range. The animations play automatically in a web-browser and might help to demonstrate glacier flow dynamics for educational purposes. The animations revealed highly complex patterns of glacier flow and surge dynamics over a 15-year time period (1998–2013). In contrast to other regions, surging glaciers in the Karakoram are often small (around 10 km2), steep, debris free, and advance for several years at comparably low annual rates (a few hundred m a−1). The advance periods of individual glaciers are generally out of phase, indicating a limited climatic control on their dynamics. On the other hand, nearly all other glaciers in the region are either stable or slightly advancing, indicating balanced or even positive mass budgets over the past few years to decades.


Sign in / Sign up

Export Citation Format

Share Document