scholarly journals Dependence of century-scale projections of the Greenland ice sheet on its thermal regime

2013 ◽  
Vol 59 (218) ◽  
pp. 1024-1034 ◽  
Author(s):  
H. Seroussi ◽  
M. Morlighem ◽  
E. Rignot ◽  
A. Khazendar ◽  
E. Larour ◽  
...  

AbstractObservations show that the Greenland ice sheet has been losing mass at an increasing rate over the past few decades, which makes it a major contributor to sea-level rise. Here we use a three-dimensional higher-order ice-flow model, adaptive mesh refinement and inverse methods to accurately reproduce the present-day ice flow of the Greenland ice sheet. We investigate the effect of the ice thermal regime on (1) basal sliding inversion and (2) projections over the next 100 years. We show that steady-state temperatures based on present-day conditions allow a reasonable representation of the thermal regime and that both basal conditions and century-scale projections are weakly sensitive to small changes in the initial temperature field, compared with changes in atmospheric conditions or basal sliding. We conclude that although more englacial temperature measurements should be acquired to validate the models, and a better estimation of geothermal heat flux is needed, it is reasonable to use steady-state temperature profiles for short-term projections, as external forcings remain the main drivers of the changes occurring in Greenland.

2012 ◽  
Vol 6 (3) ◽  
pp. 573-588 ◽  
Author(s):  
F. Pattyn ◽  
C. Schoof ◽  
L. Perichon ◽  
R. C. A. Hindmarsh ◽  
E. Bueler ◽  
...  

Abstract. Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing). Unique steady state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving "shelfy stream" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including fixed grid models that generally perform poorly at coarse resolution. Fixed grid models, with nested grid representations of the grounding line, are able to generate accurate steady state positions, but can be inaccurate over transients. Only one full-Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full-Stokes models remains to be determined in detail, especially during transients.


1968 ◽  
Vol 7 (51) ◽  
pp. 363-376 ◽  
Author(s):  
L. Lliboutry

AbstractA solution for the steady flow of a cold ice sheet is recalled, which takes account of the heat released by deformation. As this strain heating increases the strain velocity, the bottom temperature may be unstable. A set of five equations with five unknowns is written, which allows the surface profile and the bottom temperature to be computed step by step by an iterative process. This has been done by computer for three very different models of ice sheets. and in each case with three distinct values of the constant B in Glen’s ice flow law. It was found in every case that steady-state temperature profiles could not be computed beyond a moderate distance from the ice divide. The correct value of B for bottom ice may be deduced from the actual surface profile. At the bottom of Greenland ice sheet, B ≈ 2.18 bar −3 year−1. This is about thirteen times bigger than for the bulk of the alpine glaciers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
G. A. Jones ◽  
A. M. G. Ferreira ◽  
B. Kulessa ◽  
M. Schimmel ◽  
A. Berbellini ◽  
...  

AbstractThe flow of the Greenland Ice Sheet is controlled by subglacial processes and conditions that depend on the geological provenance and temperature of the crust beneath it, neither of which are adequately known. Here we present a seismic velocity model of the uppermost 5 km of the Greenlandic crust. We show that slow velocities in the upper crust tend to be associated with major outlet glaciers along the ice-sheet margin, and elevated geothermal heat flux along the Iceland hotspot track inland. Outlet glaciers particularly susceptible to basal slip over deformable subglacial sediments include Jakobshavn, Helheim and Kangerdlussuaq, while geothermal warming and softening of basal ice may affect the onset of faster ice flow at Petermann Glacier and the Northeast Greenland Ice Stream. Interactions with the solid earth therefore control the past, present and future dynamics of the Greenland Ice Sheet and must be adequately explored and implemented in ice sheet models.


2018 ◽  
Vol 12 (10) ◽  
pp. 3383-3407 ◽  
Author(s):  
Josh Crozier ◽  
Leif Karlstrom ◽  
Kang Yang

Abstract. Ice surface topography controls the routing of surface meltwater generated in the ablation zones of glaciers and ice sheets. Meltwater routing is a direct source of ice mass loss as well as a primary influence on subglacial hydrology and basal sliding of the ice sheet. Although the processes that determine ice sheet topography at the largest scales are known, controls on the topographic features that influence meltwater routing at supraglacial internally drained catchment (IDC) scales (<10s of km) are less well constrained. Here we examine the effects of two processes on ice sheet surface topography: transfer of bed topography to the surface of flowing ice and thermal–fluvial erosion by supraglacial meltwater streams. We implement 2-D basal transfer functions in seven study regions of the western Greenland Ice Sheet ablation zone using recent data sets for bed elevation, ice surface elevation, and ice surface velocities. We find that ∼1–10 km scale ice surface features can be explained well by bed topography transfer in regions with different multiyear-averaged ice flow conditions. We use flow-routing algorithms to extract supraglacial stream networks from 2 to 5 m resolution digital elevation models and compare these with synthetic flow networks calculated on ice surfaces predicted by bed topography transfer. Multiple geomorphological metrics calculated for these networks suggest that bed topography can explain general ∼1–10 km supraglacial meltwater routing and that thermal–fluvial erosion thus has a lesser role in shaping ice surface topography on these scales. We then use bed topography transfer functions and flow routing to conduct a parameter study predicting how supraglacial IDC configurations and subglacial hydraulic potential would change under varying multiyear-averaged ice flow and basal sliding regimes. Predicted changes to subglacial hydraulic flow pathways directly caused by changing ice surface topography are subtle, but temporal changes in basal sliding or ice thickness have potentially significant influences on IDC spatial distribution. We suggest that changes to IDC size and number density could affect subglacial hydrology primarily by dispersing the englacial–subglacial input of surface meltwater.


1968 ◽  
Vol 7 (51) ◽  
pp. 363-376 ◽  
Author(s):  
L. Lliboutry

AbstractA solution for the steady flow of a cold ice sheet is recalled, which takes account of the heat released by deformation. As this strain heating increases the strain velocity, the bottom temperature may be unstable. A set of five equations with five unknowns is written, which allows the surface profile and the bottom temperature to be computed step by step by an iterative process. This has been done by computer for three very different models of ice sheets. and in each case with three distinct values of the constantBin Glen’s ice flow law. It was found in every case that steady-state temperature profiles could not be computed beyond a moderate distance from the ice divide. The correct value ofBfor bottom ice may be deduced from the actual surface profile. At the bottom of Greenland ice sheet,B≈ 2.18 bar−3year−1. This is about thirteen times bigger than for the bulk of the alpine glaciers.


2012 ◽  
Vol 6 (1) ◽  
pp. 267-308 ◽  
Author(s):  
F. Pattyn ◽  
C. Schoof ◽  
L. Perichon ◽  
R. C. A. Hindmarsh ◽  
E. Bueler ◽  
...  

Abstract. Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing). Unique steady-state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving "shelfy stream" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including in fixed-grid models that generally perform poorly at coarse resolution. Fixed grid models with nested grid representations of the grounding line are able to generate accurate steady-state positions, but can be inaccurate over transients. Only one full Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full Stokes models remains to be determined in detail, especially during transients.


1989 ◽  
Vol 35 (121) ◽  
pp. 406-417 ◽  
Author(s):  
Niels Reeh

AbstractSimple analytical models are developed in order to study how up-stream variations in accumulation rate and ice thickness, and horizontal convergence/ divergence of the flow influence the age and annual layer-thickness profiles in a steady-state ice sheet. Generally, a decrease/increase of the accumulation rate and an increase/decrease of the ice thickness in the up-stream direction (i.e. opposite to the flow direction) results in older/younger ice at a given depth in the ice sheet than would result if the up-stream accumulation rate and ice thickness were constant along the flow line.Convergence/divergence of the up-stream flow will decrease/increase the effect of the accumulation-rate and ice-thickness gradients, whereas convergence/divergence has no influence at all on the age and layer-thickness profiles if the up-stream accumulation rate and ice thickness are constant along the flow line.A modified column-flow model, i.e. a model for which the strain-rate profile (or, equivalently, the horizontal velocity profile) is constant down to the depth corresponding to the Holocene/Wisconsinan transition 10 750 year BP., seems to work well for dating the ice back to 10 000–11 000 year B P. at sites in the slope regions of the Greenland ice sheet. For example, the model predicts the experimentally determined age profile at Dye 3 on the south Greenland ice sheet with a relative root-mean-square error of only 3% back to c. 10 700 year B.P. As illustrated by the Milcent location on the western slope of the central Greenland ice sheet, neglecting up-stream accumulation-rate and ice-thickness gradients, may lead to dating errors as large as 3000–000 years for c. 10 000 year old ice.However, even if these gradients are taken into account, the simple model fails to give acceptable ages for 10 000 year old ice at locations on slightly sloping ice ridges with strongly divergent flow, as for example the Camp Century location. The main reason for this failure is that the site of origin of the ice cannot be determined accurately enough by the simple models, if the flow is strongly divergent.With this exception, the simple models are well suited for dating the ice at locations where the available data or the required accuracy do not justify application of elaborate numerical models. The formulae derived for the age-depth profiles can easily be worked out on a pocket calculator, and in many cases will be a sensible alternative to using numerical flow models.


2021 ◽  
Author(s):  
Paul Halas ◽  
Jeremie Mouginot ◽  
Basile de Fleurian ◽  
Petra Langebroek

&lt;div&gt; &lt;p&gt;Ice losses from the Greenland Ice Sheet have been increasing in the last two decades, leading to a larger contribution to the global sea level rise.&amp;#160;Roughly 40% of the contribution comes from ice-sheet dynamics, mainly regulated by basal sliding.&amp;#160;The sliding component&amp;#160;of glaciers has been observed to be strongly related to surface melting, as water&amp;#160;can eventually&amp;#160;reach the bed and impact&amp;#160;the subglacial water pressure, affecting the basal sliding.&amp;#160;&amp;#160;&lt;/p&gt; &lt;/div&gt;&lt;div&gt; &lt;p&gt;The link between ice velocities and surface melt on multi-annual time scale is still not totally understood&amp;#160;even though it&amp;#160;is of major importance with expected increasing surface melting.&amp;#160;Several studies showed&amp;#160;some&amp;#160;correlation between an increase in surface melt and a slowdown in&amp;#160;velocities, but&amp;#160;there is no&amp;#160;consensus&amp;#160;on those trends.&amp;#160;Moreover&amp;#160;those&amp;#160;investigations&amp;#160;only&amp;#160;presented results&amp;#160;in a limited area over&amp;#160;Southwest&amp;#160;Greenland.&amp;#160;&amp;#160;&lt;/p&gt; &lt;/div&gt;&lt;div&gt; &lt;p&gt;Here we present the ice motion over many land-terminating glaciers on the Greenland Ice Sheet for the period 2000 - 2020. This type of glacier is ideal for studying processes at the interface between the bed and the ice since they are exempted from interactions with the sea while still being relevant for all glaciers since they share the same basal friction laws. The velocity data was obtained using optical Landsat 7 &amp; 8 imagery and feature-tracking algorithm. We attached importance keeping the starting date of our image pairs similar, and avoided stacking pairs starting before and after melt seasons, resulting in multiple velocity products for each year.&amp;#160;&amp;#160;&lt;/p&gt; &lt;/div&gt;&lt;div&gt; &lt;p&gt;Our results show similar velocity trends for previously studied areas with a slowdown until 2012 followed by an acceleration.&amp;#160;This trend however does not seem to be observed on the whole ice sheet and is probably&amp;#160;specific&amp;#160;to&amp;#160;this region&amp;#8217;s&amp;#160;climate forcing.&amp;#160;&lt;/p&gt; &lt;/div&gt;&lt;div&gt; &lt;p&gt;Moreover comparison between ice velocities from different parts of Greenland allows us to observe the impact of different climatic trends on ice dynamics.&lt;/p&gt; &lt;/div&gt;


2021 ◽  
Author(s):  
Parviz Ajourlou ◽  
François PH Lapointe ◽  
Glenn A Milne ◽  
Yasmina Martos

&lt;p&gt;Geothermal heat flux (GHF) is known to be an important control on the basal thermal state of an ice sheet which, in turn, is a key factor in governing how the ice sheet will evolve in response to a given climate forcing. In recent years, several studies have estimated GHF beneath the Greenland ice sheet using different approaches (e.g. Rezvanbehbahani et al., Geophysical Research Letters, 2017; Martos et al., Geophysical Research Letters, 2018; Greve, Polar Data Journal, 2019). Comparing these different estimates indicates poor agreement and thus large uncertainty in our knowledge of this important boundary condition for modelling the ice sheet. The primary aim of this study is to quantify the influence of this uncertainty on modelling the past evolution of the ice sheet with a focus on the most recent deglaciation. We build on past work that considered three GHF models (Rogozhina et al., 2011) by considering over 100 different realizations of this input field. We use the uncertainty estimates from Martos et al. (Geophysical Research Letters, 2018) to generate GHF realisations via a statistical sampling procedure. A sensitivity analysis using these realisations and the Parallel Ice Sheet Model (PISM, Bueler and Brown, Journal of Geophysical Research, 2009) indicates that uncertainty in GHF has a dramatic impact on both the volume and spatial distribution of ice since the last glacial maximum, indicating that more precise constraints on this boundary condition are required to improve our understanding of past ice sheet evolution and, consequently, reduce uncertainty in future projections.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document