scholarly journals Uppermost crustal structure regulates the flow of the Greenland Ice Sheet

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
G. A. Jones ◽  
A. M. G. Ferreira ◽  
B. Kulessa ◽  
M. Schimmel ◽  
A. Berbellini ◽  
...  

AbstractThe flow of the Greenland Ice Sheet is controlled by subglacial processes and conditions that depend on the geological provenance and temperature of the crust beneath it, neither of which are adequately known. Here we present a seismic velocity model of the uppermost 5 km of the Greenlandic crust. We show that slow velocities in the upper crust tend to be associated with major outlet glaciers along the ice-sheet margin, and elevated geothermal heat flux along the Iceland hotspot track inland. Outlet glaciers particularly susceptible to basal slip over deformable subglacial sediments include Jakobshavn, Helheim and Kangerdlussuaq, while geothermal warming and softening of basal ice may affect the onset of faster ice flow at Petermann Glacier and the Northeast Greenland Ice Stream. Interactions with the solid earth therefore control the past, present and future dynamics of the Greenland Ice Sheet and must be adequately explored and implemented in ice sheet models.

1994 ◽  
Vol 40 (135) ◽  
pp. 359-367 ◽  
Author(s):  
Peter G. Knight ◽  
David E. Sugden ◽  
Christopher D. Minty

AbstractSpatial variations in the debris-bearing basal ice layer exposed at the ice-sheet margin in West Greenland reflect the geography of basal melting and ice flow around large obstacles close to the margin. This paper demonstrates the character of the basal ice layer, which comprises fine material incorporated in an interior, subglacial environment and coarser material entrained in an ice-marginal environment. We develop an empirical model of ice flow close to a lobate margin of the ice sheet in which ice convergence and divergence, and limited subglacial melting affect the character and distribution of the basal ice at the margin. There is a tendency for the convergence and divergence to thicken the basal layer in lobate areas and to thin it in inter-lobate areas. Under certain circumstances, basal melting may remove much of the layer from beneath the snouts of larger lobes, thus causing the basal layer to be thickest in an intermediate location.


1994 ◽  
Vol 40 (135) ◽  
pp. 359-367 ◽  
Author(s):  
Peter G. Knight ◽  
David E. Sugden ◽  
Christopher D. Minty

AbstractSpatial variations in the debris-bearing basal ice layer exposed at the ice-sheet margin in West Greenland reflect the geography of basal melting and ice flow around large obstacles close to the margin. This paper demonstrates the character of the basal ice layer, which comprises fine material incorporated in an interior, subglacial environment and coarser material entrained in an ice-marginal environment. We develop an empirical model of ice flow close to a lobate margin of the ice sheet in which ice convergence and divergence, and limited subglacial melting affect the character and distribution of the basal ice at the margin. There is a tendency for the convergence and divergence to thicken the basal layer in lobate areas and to thin it in inter-lobate areas. Under certain circumstances, basal melting may remove much of the layer from beneath the snouts of larger lobes, thus causing the basal layer to be thickest in an intermediate location.


2021 ◽  
Vol 15 (2) ◽  
pp. 897-907
Author(s):  
Ian E. McDowell ◽  
Neil F. Humphrey ◽  
Joel T. Harper ◽  
Toby W. Meierbachtol

Abstract. Temperature sensors installed in a grid of nine full-depth boreholes drilled in the southwestern ablation zone of the Greenland Ice Sheet recorded cooling in discrete sections of ice over time within the lowest third of the ice column in most boreholes. Rates of temperature change outpace cooling expected from vertical conduction alone. Additionally, observed temperature profiles deviate significantly from the site-average thermal profile that is shaped by all thermomechanical processes upstream. These deviations imply recent, localized changes to the basal thermal state in the boreholes. Although numerous heat sources exist to add energy and warm ice as it moves from the central divide towards the margin such as strain heat from internal deformation, latent heat from refreezing meltwater, and the conduction of geothermal heat across the ice–bedrock interface, identifying heat sinks proves more difficult. After eliminating possible mechanisms that could cause cooling, we find that the observed cooling is a manifestation of previous warming in near-basal ice. Thermal decay after latent heat is released from freezing water in basal crevasses is the most likely mechanism resulting in the transient evolution of temperature and the vertical thermal structure observed at our site. We argue basal crevasses are a viable englacial heat source in the basal ice of Greenland's ablation zone and may have a controlling influence on the temperature structure of the near-basal ice.


2020 ◽  
Author(s):  
Ian E. McDowell ◽  
Neil F. Humphrey ◽  
Joel T. Harper ◽  
Toby W. Meierbachtol

Abstract. Temperature sensors installed in a grid of 9 full-depth boreholes drilled in the southwestern ablation zone of the Greenland Ice Sheet consistently record cooling over time within the lowest third of the ice column. Rates of temperature change outpace cooling expected from vertical conduction alone. Additionally, observed static temperature profiles deviate significantly from modeled purely diffusional thermal profiles, implying strong non-conductive heat transfer processes within the lowest portion of the ice column. Although numerous heat sources exist to add energy and warm ice as it moves from the central divide towards the margin such as strain heat from internal deformation, latent heat from refreezing meltwater, and the conduction of geothermal heat across the ice-bedrock interface, identifying heat sinks proves more difficult. After eliminating possible mechanisms that could cause cooling, we find that the observed cooling is a manifestation of previous warming in basal ice. Thermal decay after latent heat is released from freezing water in basal crevasses is the most likely mechanism resulting in the temporal evolution of temperature and the vertical thermal structure observed at our site. Basal crevasses are a viable englacial heat source in the basal ice of Greenland's ablation zone and may have a controlling influence on the temperature structure of the near basal ice.


2013 ◽  
Vol 59 (218) ◽  
pp. 1024-1034 ◽  
Author(s):  
H. Seroussi ◽  
M. Morlighem ◽  
E. Rignot ◽  
A. Khazendar ◽  
E. Larour ◽  
...  

AbstractObservations show that the Greenland ice sheet has been losing mass at an increasing rate over the past few decades, which makes it a major contributor to sea-level rise. Here we use a three-dimensional higher-order ice-flow model, adaptive mesh refinement and inverse methods to accurately reproduce the present-day ice flow of the Greenland ice sheet. We investigate the effect of the ice thermal regime on (1) basal sliding inversion and (2) projections over the next 100 years. We show that steady-state temperatures based on present-day conditions allow a reasonable representation of the thermal regime and that both basal conditions and century-scale projections are weakly sensitive to small changes in the initial temperature field, compared with changes in atmospheric conditions or basal sliding. We conclude that although more englacial temperature measurements should be acquired to validate the models, and a better estimation of geothermal heat flux is needed, it is reasonable to use steady-state temperature profiles for short-term projections, as external forcings remain the main drivers of the changes occurring in Greenland.


2020 ◽  
Author(s):  
Nathan Maier ◽  
Neil Humphrey ◽  
Joel Harper ◽  
Toby Meierbachtol

<p>Basal traction is fundamental to the dynamics of glaciers and ice sheets. On the Greenland Ice Sheet meltwater delivery to the bed and evolving drainage efficiency and connectivity modulate traction producing a characteristic seasonal velocity response. While numerical modelling and basal pressure observations have linked these velocity variations to evolving subglacial drainage, a high-fidelity record of basal traction is needed to constrain the timing and magnitude of traction changes that modulate summer ice flow.  We present a continuous summertime record of basal traction, basal ice deformation, and surface velocity measured at a densely instrumented field site in western Greenland. We use a five-station GPS network and englacial measurements of shearing and ice temperature to directly estimate the basal traction using the force balance method at the site-scale (100s of meters). Localized traction variations (10s of meters) are inferred via variations in the near-basal deformation field recorded by inclinometers installed directly above the basal interface. Combined, the data give a multi-scale perspective on how the basal traction changes during summer and relates to the conceptual model of melt season flow. Our results show the basal traction migrates between extremes during the melt season, with magnitudes greater than three times the average winter traction and near zero. The basal traction extremes correspond with the spring event, the inferred transition to efficient drainage, and the late summer velocity decline. The rapid strengthening and weakening of the basal interface show the complicated interaction of local and regional forcing that modulate melt season sliding. The near-basal deformation variations allow us to constrain the stress configuration and drainage state during each extreme traction period. Overall, the results allow us to refine the conceptual model for melt season traction changes and provide measured estimates of traction variations which can be used as quantitative targets for coupled drainage – ice dynamic models.</p>


2002 ◽  
Vol 48 (161) ◽  
pp. 192-198 ◽  
Author(s):  
Peter G. Knight ◽  
Richard I. Waller ◽  
Carrie J. Patterson ◽  
Alison P. Jones ◽  
Zoe P. Robinson

AbstractSediment production at a terrestrial section of the ice-sheet margin in West Greenland is dominated by debris released through the basal ice layer. The debris flux through the basal ice at the margin is estimated to be 12–45 m3 m−1 a−1. This is three orders of magnitude higher than that previously reported for East Antarctica, an order of magnitude higher than sites reported from in Norway, Iceland and Switzerland, but an order of magnitude lower than values previously reported from tidewater glaciers in Alaska and other high-rate environments such as surging glaciers. At our site, only negligible amounts of debris are released through englacial, supraglacial or subglacial sediment transfer. Glaciofluvial sediment production is highly localized, and long sections of the ice-sheet margin receive no sediment from glaciofluvial sources. These findings differ from those of studies at more temperate glacial settings where glaciofluvial routes are dominant and basal ice contributes only a minor percentage of the debris released at the margin. These data on debris flux through the terrestrial margin of an outlet glacier contribute to our limited knowledge of debris production from the Greenland ice sheet.


1997 ◽  
Vol 43 (143) ◽  
pp. 3-10 ◽  
Author(s):  
V.I. Morgan ◽  
C.W. Wookey ◽  
J. Li ◽  
T.D. van Ommen ◽  
W. Skinner ◽  
...  

AbstractThe aim of deep ice drilling on Law Dome, Antarctica, has been to exploit the special characteristics of Law Dome summit, i.e. low temperature and high accumulation near an ice divide, to obtain a high-resolution ice core for climatic/environmental studies of the Holocene and the Last Glacial Maximum (LGM). Drilling was completed in February 1993, when basal ice containing small fragments of rock was reached at a depth of 1196 m. Accurate ice dating, obtained by counting annual layers revealed by fine-detail δ18О, peroxide and electrical-conductivity measurements, is continuous down to 399 m, corresponding to a date of AD 1304. Sulphate concentration measurements, made around depths where conductivity tracing indicates volcanic fallout, allow confirmation of the dating (for Agung in 1963 and Tambora in 1815) or estimates of the eruption date from the ice dating (for the Kuwae, Vanuatu, eruption ~1457). The lower part of the core is dated by extrapolating the layer-counting using a simple model of the ice flow. At the LGM, ice-fabric measurements show a large decrease (250 to 14 mm2) in crystal size and a narrow maximum in c-axis vertically. The main zone of strong single-pole fabrics however, is located higher up in a broad zone around 900 m. Oxygen-isotope (δ18O) measurements show Holocene ice down to 1113 m, the LGM at 1133 m and warm (δ18O) about the same as Holocene) ice near the base of the ice sheet. The LGM/Holocene δ18O shift of 7.0‰, only ~1‰ larger than for Vostok, indicates that Law Dome remained an independent ice cap and was not overridden by the inland ice sheet in the Glacial.


2016 ◽  
Vol 2 (5) ◽  
pp. e1501538 ◽  
Author(s):  
Aurélien Mordret ◽  
T. Dylan Mikesell ◽  
Christopher Harig ◽  
Bradley P. Lipovsky ◽  
Germán A. Prieto

The Greenland ice sheet presently accounts for ~70% of global ice sheet mass loss. Because this mass loss is associated with sea-level rise at a rate of 0.7 mm/year, the development of improved monitoring techniques to observe ongoing changes in ice sheet mass balance is of paramount concern. Spaceborne mass balance techniques are commonly used; however, they are inadequate for many purposes because of their low spatial and/or temporal resolution. We demonstrate that small variations in seismic wave speed in Earth’s crust, as measured with the correlation of seismic noise, may be used to infer seasonal ice sheet mass balance. Seasonal loading and unloading of glacial mass induces strain in the crust, and these strains then result in seismic velocity changes due to poroelastic processes. Our method provides a new and independent way of monitoring (in near real time) ice sheet mass balance, yielding new constraints on ice sheet evolution and its contribution to global sea-level changes. An increased number of seismic stations in the vicinity of ice sheets will enhance our ability to create detailed space-time records of ice mass variations.


2021 ◽  
Author(s):  
Parviz Ajourlou ◽  
François PH Lapointe ◽  
Glenn A Milne ◽  
Yasmina Martos

<p>Geothermal heat flux (GHF) is known to be an important control on the basal thermal state of an ice sheet which, in turn, is a key factor in governing how the ice sheet will evolve in response to a given climate forcing. In recent years, several studies have estimated GHF beneath the Greenland ice sheet using different approaches (e.g. Rezvanbehbahani et al., Geophysical Research Letters, 2017; Martos et al., Geophysical Research Letters, 2018; Greve, Polar Data Journal, 2019). Comparing these different estimates indicates poor agreement and thus large uncertainty in our knowledge of this important boundary condition for modelling the ice sheet. The primary aim of this study is to quantify the influence of this uncertainty on modelling the past evolution of the ice sheet with a focus on the most recent deglaciation. We build on past work that considered three GHF models (Rogozhina et al., 2011) by considering over 100 different realizations of this input field. We use the uncertainty estimates from Martos et al. (Geophysical Research Letters, 2018) to generate GHF realisations via a statistical sampling procedure. A sensitivity analysis using these realisations and the Parallel Ice Sheet Model (PISM, Bueler and Brown, Journal of Geophysical Research, 2009) indicates that uncertainty in GHF has a dramatic impact on both the volume and spatial distribution of ice since the last glacial maximum, indicating that more precise constraints on this boundary condition are required to improve our understanding of past ice sheet evolution and, consequently, reduce uncertainty in future projections.</p>


Sign in / Sign up

Export Citation Format

Share Document