scholarly journals Numerical simulations of Gurenhekou glacier on the Tibetan Plateau

2014 ◽  
Vol 60 (219) ◽  
pp. 71-82 ◽  
Author(s):  
Liyun Zhao ◽  
Lide Tian ◽  
Thomas Zwinger ◽  
Ran Ding ◽  
Jibiao Zong ◽  
...  

AbstractWe investigate the impact of climate change on Gurenhekou glacier, southern Tibetan Plateau, which is representative of the tens of thousands of mountain glaciers in the region. We apply a three-dimensional, thermomechanically coupled full-Stokes model to simulate the evolution of the glacier. The steep and rugged bedrock geometry requires use of such a flow model. We parameterize the temperature and surface mass-balance (SMB) uncertainties using nearby automatic weather and meteorological stations, 6 year measured SMB data and an energy-balance model for a nearby glacier. Summer air temperature increased at 0.02 Ka−1 over the past 50 years, and the glacier has retreated at an average rate of 8.3 m a−1. Prognostic simulations suggest an accelerated annual average retreat rate of ~9.1 ma−1 along the central flowline for the next 25 years under continued steady warming. However, regional climate models suggest a marked increase in warming rate over Tibet during the 21st century, and this rate causes about a 0.9 ± 0.3% a−1 loss of glaciated area and 1.1 ± 0.6% a−1 shrinkage of glacier volume. These results, the rather high warming rates predicted and the small sizes of most Tibetan glaciers, suggest that significant numbers of glaciers will be lost in the region during the 21st century.

2013 ◽  
Vol 7 (1) ◽  
pp. 145-173 ◽  
Author(s):  
L. Zhao ◽  
L. Tian ◽  
T. Zwinger ◽  
R. Ding ◽  
J. Zong ◽  
...  

Abstract. We investigate the impact of climate change on a small Tibetan glacier that is representative of the tens of thousands of mountain glaciers in the region. We apply a three-dimensional, thermo-mechanically coupled full-Stokes model to Gurenhekou Glacier located in the southern Tibetan Plateau. The steep and rugged geometry requires use of such a flow model to simulate the dynamical evolution of the glacier. We parameterize the temperature and mass balance using nearby automatic weather stations and an energy balance model for another glacier in the same mountain range. Summer air temperature increased at 0.02 K a−1 over the past 50 yr, and the glacier has retreated at an average rate of 8.3 m a−1. Prognostic simulations suggest an accelerated retreating rate up to 14 m a−1 for the next 50 yr under continued steady warming, which is consistent with observed increased retreat in the last decade. However, regional climate models suggest a marked increase in warming rate over Tibet during the 21st century, and this rate causes about a 1% per year loss of glaciated area and glacier volume. These changes imply that this small glacier will probably disappear in a century. Although Tibetan glaciers are not particularly sensitive to climate warming, the rather high warming rates predicted by regional climate models combined with the small sizes of most Tibetan glaciers suggest that significant numbers of glaciers will be lost in the region during the 21st century.


Author(s):  
Yanhong Gao ◽  
Deliang Chen

The modeling of climate over the Tibetan Plateau (TP) started with the introduction of Global Climate Models (GCMs) in the 1950s. Since then, GCMs have been developed to simulate atmospheric dynamics and eventually the climate system. As the highest and widest international plateau, the strong orographic forcing caused by the TP and its impact on general circulation rather than regional climate was initially the focus. Later, with growing awareness of the incapability of GCMs to depict regional or local-scale atmospheric processes over the heterogeneous ground, coupled with the importance of this information for local decision-making, regional climate models (RCMs) were established in the 1970s. Dynamic and thermodynamic influences of the TP on the East and South Asia summer monsoon have since been widely investigated by model. Besides the heterogeneity in topography, impacts of land cover heterogeneity and change on regional climate were widely modeled through sensitivity experiments.In recent decades, the TP has experienced a greater warming than the global average and those for similar latitudes. GCMs project a global pattern where the wet gets wetter and the dry gets drier. The climate regime over the TP covers the extreme arid regions from the northwest to the semi-humid region in the southeast. The increased warming over the TP compared to the global average raises a number of questions. What are the regional dryness/wetness changes over the TP? What is the mechanism of the responses of regional changes to global warming? To answer these questions, several dynamical downscaling models (DDMs) using RCMs focusing on the TP have recently been conducted and high-resolution data sets generated. All DDM studies demonstrated that this process-based approach, despite its limitations, can improve understandings of the processes that lead to precipitation on the TP. Observation and global land data assimilation systems both present more wetting in the northwestern arid/semi-arid regions than the southeastern humid/semi-humid regions. The DDM was found to better capture the observed elevation dependent warming over the TP. In addition, the long-term high-resolution climate simulation was found to better capture the spatial pattern of precipitation and P-E (precipitation minus evapotranspiration) changes than the best available global reanalysis. This facilitates new and substantial findings regarding the role of dynamical, thermodynamics, and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The DDM was found to add value regarding snowfall retrieval, precipitation frequency, and orographic precipitation.Although these advantages in the DDM over the TP are evidenced, there are unavoidable facts to be aware of. Firstly, there are still many discrepancies that exist in the up-to-date models. Any uncertainty in the model’s physics or in the land information from remote sensing and the forcing could result in uncertainties in simulation results. Secondly, the question remains of what is the appropriate resolution for resolving the TP’s heterogeneity. Thirdly, it is a challenge to include human activities in the climate models, although this is deemed necessary for future earth science. All-embracing further efforts are expected to improve regional climate models over the TP.


2017 ◽  
Vol 56 (4) ◽  
pp. 230-239 ◽  
Author(s):  
Lingjing Zhu ◽  
Jiming Jin ◽  
Xin Liu ◽  
Lei Tian ◽  
Qunhui Zhang

Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi ◽  
Francesca Marsili

<p>As consequence of global warming extreme weather events might become more frequent and severe across the globe. The evaluation of the impact of climate change on extremes is then a crucial issue for the resilience of infrastructures and buildings and is a key challenge for adaptation planning. In this paper, a suitable procedure for the estimation of future trends of climatic actions is presented starting from the output of regional climate models and taking into account the uncertainty in the model itself. In particular, the influence of climate change on ground snow loads is discussed in detail and the typical uncertainty range is determined applying an innovative algorithm for weather generation. Considering different greenhouse gasses emission scenarios, some results are presented for the Italian Mediterranean region proving the ability of the method to define factors of change for climate extremes also allowing a sound estimate of the uncertainty range associated with different models.</p>


2021 ◽  
Author(s):  
Blanka Bartok

&lt;p&gt;As solar energy share is showing a significant growth in the European electricity generation system, assessments regarding long-term variation of this variable related to climate change are becoming more and more relevant for this sector. Several studies analysed the impact of climate change on the solar energy sector in Europe (Jerez et al, 2015) finding light impact (-14%; +2%) in terms of mean surface solar radiation. The present study focuses on extreme values, namely on the distribution of low surface solar radiation (overcast situation) and high surface solar radiation (clear sky situation), since the frequencies of these situations have high impact on electricity generation.&lt;/p&gt;&lt;p&gt;The study considers 11 high-resolution (0.11 deg) bias-corrected climate projections from the EURO-CORDEX ensemble with 5 Global Climate Models (GCMs) downscaled by 6 Regional Climate Models (RCMs).&lt;/p&gt;&lt;p&gt;Changes in extreme surface solar radiation frequencies show different regional patterns over Europe.&lt;/p&gt;&lt;p&gt;The study also includes a case study determining the changes in solar power generation induced by the extreme situations.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Jerez et al (2015): The impact of climate change on photovoltaic power generation in Europe, Nature Communications 6(1):10014, 10.1038/ncomms10014&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2019 ◽  
Author(s):  
Minchao Wu ◽  
Grigory Nikulin ◽  
Erik Kjellström ◽  
Danijel Belušić ◽  
Colin Jones ◽  
...  

Abstract. We investigate the impact of model formulation and horizontal resolution on the ability of Regional Climate Models (RCMs) to simulate precipitation in Africa. Two RCMs – SMHI-RCA4 and HCLIM38-ALADIN are utilized for downscaling the ERA-Interim reanalysis over Africa at four different resolutions: 25, 50, 100 and 200 km. Additionally to the two RCMs, two different configurations of the same RCA4 are used. Contrasting different RCMs, configurations and resolutions it is found that model formulation has the primary control over many aspects of the precipitation climatology in Africa. Patterns of spatial biases in seasonal mean precipitation are mostly defined by model formulation while the magnitude of the biases is controlled by resolution. In a similar way, the phase of the diurnal cycle is completely controlled by model formulation (convection scheme) while its amplitude is a function of resolution. Although higher resolution in many cases leads to smaller biases in the time mean climate, the impact of higher resolution is mixed. An improvement in one region/season (e.g. reduction of dry biases) often corresponds to a deterioration in another region/season (e.g. amplification of wet biases). The experiments confirm a pronounced and well known impact of higher resolution – a more realistic distribution of daily precipitation. Even if the time-mean climate is not always greatly sensitive to resolution, what the time-mean climate is made up of, higher order statistics, is sensitive. Therefore, the realism of the simulated precipitation increases as resolution increases. Our results show that improvements in the ability of RCMs to simulate precipitation in Africa compared to their driving reanalysis in many cases are simply related to model formulation and not necessarily to higher resolution. Such model formulation related improvements are strongly model dependent and in general cannot be considered as an added value of downscaling.


2020 ◽  
Vol 172 ◽  
pp. 02006
Author(s):  
Hamed Hedayatnia ◽  
Marijke Steeman ◽  
Nathan Van Den Bossche

Understanding how climate change accelerates or slows down the process of material deterioration is the first step towards assessing adaptive approaches for the preservation of historical heritage. Analysis of the climate change effects on the degradation risk assessment parameters like salt crystallization cycles is of crucial importance when considering mitigating actions. Due to the vulnerability of cultural heritage in Iran to climate change, the impact of this phenomenon on basic parameters plus variables more critical to building damage like salt crystallization index needs to be analyzed. Regional climate modelling projections can be used to asses the impact of climate change effects on heritage. The output of two different regional climate models, the ALARO-0 model (Ghent University-RMI, Belgium) and the REMO model (HZG-GERICS, Germany), is analyzed to find out which model is more adapted to the region. So the focus of this research is mainly on the evaluation to determine the reliability of both models over the region. For model validation, a comparison between model data and observations was performed in 4 different climate zones for 30 years to find out how reliable these models are in the field of building pathology.


Sign in / Sign up

Export Citation Format

Share Document