scholarly journals Role of model initialization for projections of 21st-century Greenland ice sheet mass loss

2014 ◽  
Vol 60 (222) ◽  
pp. 782-794 ◽  
Author(s):  
G. Ađalgeirsdóttir ◽  
A. Aschwanden ◽  
C. Khroulev ◽  
F. Boberg ◽  
R. Mottram ◽  
...  

AbstractModel simulations of the Greenland ice sheet contribution to 21st-century sea-level rise are performed with a state-of-the-art ice-sheet model (Parallel Ice Sheet Model (PISM)). The climate-forcing fields are obtained from the European Union’s Seventh Framework Programme project ice2sea, in which three regional climate models are used to dynamically downscale two scenarios (A1B and E1) from two general circulation models (ECHAM5 and HadCM3). To assess the sensitivity of the projections to the model initial state, four initialization methods are applied. In these experiments, the simulated contribution to sea-level rise by 2100 ranges from an equivalent of 0.2 to 6.8 cm. The largest uncertainties arise from different formulations of the regional climate models (0.8–3.9 cm) and applied scenarios (0.65–1.9 cm), but an important source of uncertainty is the initialization method (0.1–0.8 cm). These model simulations do not account for the recently observed acceleration of ice streams and consequent thinning rates, the changing ice discharge that may result from the spatial and temporal variability of ocean forcing, or the feedback occurring between ice-sheet elevation changes and climate forcing. Thus the results should be considered the lower limit of Greenland ice sheet contributions to sea-level rise, until such processes have been integrated into large-scale ice-sheet models.


2012 ◽  
Vol 6 (6) ◽  
pp. 1275-1294 ◽  
Author(s):  
J. G. L. Rae ◽  
G. Aðalgeirsdóttir ◽  
T. L. Edwards ◽  
X. Fettweis ◽  
J. M. Gregory ◽  
...  

Abstract. Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs). This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr−2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr−2), with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual mean near-surface air temperature increase over Greenland of ~ 2°C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice sheet would eventually be eliminated.



2020 ◽  
Author(s):  
Stefan Hofer ◽  
Charlotte Lang ◽  
Charles Amory ◽  
Christoph Kittel ◽  
Alison Delhasse ◽  
...  

<p>Future climate projections show a marked increase in Greenland Ice Sheet (GrIS) runoff<br>during the 21st century, a direct consequence of the Polar Amplification signal. Regional<br>climate models (RCMs) are a widely used tool to downscale ensembles of projections from<br>global climate models (GCMs) to assess the impact of global warming on GrIS melt and<br>sea level rise contribution. Initial results of the CMIP6 GCM model intercomparison<br>project have revealed a greater 21st century temperature rise than in CMIP5 models.<br>However, so far very little is known about the subsequent impacts on the future GrIS<br>surface melt and therefore sea level rise contribution. Here, we show that the total GrIS<br>melt during the 21st century almost doubles when using CMIP6 forcing compared to the<br>previous CMIP5 model ensemble, despite an equal global radiative forcing of +8.5 W/m2<br>in 2100 in both RCP8.5 and SSP58.5 scenarios. The total GrIS sea level rise contribution<br>from surface melt in our high-resolution (15 km) projections is 17.8 cm in SSP58.5, 7.9 cm<br>more than in our RCP8.5 simulations, despite the same radiative forcing. We identify a<br>+1.7°C greater Arctic amplification in the CMIP6 ensemble as the main driver behind the<br>presented doubling of future GrIS sea level rise contribution</p>



2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefan Hofer ◽  
Charlotte Lang ◽  
Charles Amory ◽  
Christoph Kittel ◽  
Alison Delhasse ◽  
...  

AbstractFuture climate projections show a marked increase in Greenland Ice Sheet (GrIS) runoff during the 21st century, a direct consequence of the Polar Amplification signal. Regional climate models (RCMs) are a widely used tool to downscale ensembles of projections from global climate models (GCMs) to assess the impact of global warming on GrIS melt and sea level rise contribution. Initial results of the CMIP6 GCM model intercomparison project have revealed a greater 21st century temperature rise than in CMIP5 models. However, so far very little is known about the subsequent impacts on the future GrIS surface melt and therefore sea level rise contribution. Here, we show that the total GrIS sea level rise contribution from surface mass loss in our high-resolution (15 km) regional climate projections is 17.8  ±  7.8 cm in SSP585, 7.9 cm more than in our RCP8.5 simulations using CMIP5 input. We identify a +1.3 °C greater Arctic Amplification and associated cloud and sea ice feedbacks in the CMIP6 SSP585 scenario as the main drivers. Additionally, an assessment of the GrIS sea level contribution across all emission scenarios highlights, that the GrIS mass loss in CMIP6 is equivalent to a CMIP5 scenario with twice the global radiative forcing.



2012 ◽  
Vol 6 (3) ◽  
pp. 2059-2113 ◽  
Author(s):  
J. G. L. Rae ◽  
G. Aðalgeirsdóttir ◽  
T. L. Edwards ◽  
X. Fettweis ◽  
J. M. Gregory ◽  
...  

Abstract. Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs). This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr−2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr−2), with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual-mean near-surface air temperature increase over Greenland of ~2 ○C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice-sheet would eventually be eliminated.



2020 ◽  
Vol 61 (81) ◽  
pp. 225-233 ◽  
Author(s):  
Lynn Montgomery ◽  
Lora Koenig ◽  
Jan T. M. Lenaerts ◽  
Peter Kuipers Munneke

AbstractSince the year 2000, Greenland ice sheet mass loss has been dominated by a decrease in surface mass balance rather than an increase in solid ice discharge. Southeast Greenland is an important region to understand how high accumulation rates can offset increasing Greenland ice sheet meltwater runoff. To that end, we derive a new 9-year long dataset (2009–17) of accumulation rates in Southeast Greenland using NASA Operation IceBridge snow radar. Our accumulation dataset derived from internal layers focuses on high elevations (1500–3000 m) because at lower elevations meltwater percolation obscured internal layer structure. The uncertainty of the radar-derived accumulation rates is 11% [using Firn Densification Model (FDM) density profiles] and the average accumulation rate ranges from 0.5 to 1.2 m w.e. With our observations spanning almost a decade, we find large inter-annual variability, but no significant trend. Accumulation rates are compared with output from two regional climate models (RCMs), MAR and RACMO2. This comparison shows that the models are underestimating accumulation in Southeast Greenland and the models misrepresent spatial heterogeneity due to an orographically forced bias in snowfall near the coast. Our dataset is useful to fill in temporal and spatial data gaps, and to evaluate RCMs where few in situ measurements are available.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas Slater ◽  
Andrew Shepherd ◽  
Malcolm McMillan ◽  
Amber Leeson ◽  
Lin Gilbert ◽  
...  

AbstractRunoff from the Greenland Ice Sheet has increased over recent decades affecting global sea level, regional ocean circulation, and coastal marine ecosystems, and it now accounts for most of the contemporary mass imbalance. Estimates of runoff are typically derived from regional climate models because satellite records have been limited to assessments of melting extent. Here, we use CryoSat-2 satellite altimetry to produce direct measurements of Greenland’s runoff variability, based on seasonal changes in the ice sheet’s surface elevation. Between 2011 and 2020, Greenland’s ablation zone thinned on average by 1.4 ± 0.4 m each summer and thickened by 0.9 ± 0.4 m each winter. By adjusting for the steady-state divergence of ice, we estimate that runoff was 357 ± 58 Gt/yr on average – in close agreement with regional climate model simulations (root mean square difference of 47 to 60 Gt/yr). As well as being 21 % higher between 2011 and 2020 than over the preceding three decades, runoff is now also 60 % more variable from year-to-year as a consequence of large-scale fluctuations in atmospheric circulation. Because this variability is not captured in global climate model simulations, our satellite record of runoff should help to refine them and improve confidence in their projections.



2020 ◽  
Author(s):  
Eelco Rohling ◽  
Fiona Hibbert

<p>Sea-level rise is among the greatest risks that arise from anthropogenic global climate change. It is receiving a lot of attention, among others in the IPCC reports, but major questions remain as to the potential contribution from the great continental ice sheets. In recent years, some modelling work has suggested that the ice-component of sea-level rise may be much faster than previously thought, but the rapidity of rise seen in these results depends on inclusion of scientifically debated mechanisms of ice-shelf decay and associated ice-sheet instability. The processes have not been active during historical times, so data are needed from previous warm periods to evaluate whether the suggested rates of sea-level rise are supported by observations or not. Also, we then need to assess which of the ice sheets was most sensitive, and why. The last interglacial (LIG; ~130,000 to ~118,000 years ago, ka) was the last time global sea level rose well above its present level, reaching a highstand of +6 to +9 m or more. Because Greenland Ice Sheet (GrIS) contributions were smaller than that, this implies substantial Antarctic Ice Sheet (AIS) contributions. However, this still leaves the timings, magnitudes, and drivers of GrIS and AIS reductions open to debate. I will discuss recently published sea-level reconstructions for the LIG highstand, which reveal that AIS and GrIS contributions were distinctly asynchronous, and that rates of rise to values above 0 m (present-day sea level) reached up to 3.5 m per century. Such high pre-anthropogenic rates of sea-level rise lend credibility to high rates inferred by ice modelling under certain ice-shelf instability parameterisations, for both the past and future. Climate forcing was distinctly asynchronous between the southern and northern hemispheres as well during the LIG, explaining the asynchronous sea-level contributions from AIS and GrIS. Today, climate forcing is synchronous between the two hemispheres, and also faster and greater than during the LIG. Therefore, LIG rates of sea-level rise should likely be considered minimum estimates for the future.</p>



1969 ◽  
Vol 31 ◽  
pp. 87-90
Author(s):  
Morten L. Andersen ◽  
Signe B. Andersen ◽  
Lars Stenseng ◽  
Henriette Skourup ◽  
William Colgan ◽  
...  

The Greenland ice sheet is losing mass to the ocean at an increasing rate (Thomas et al. 2006). During the 1980s the ice sheet was believed to be in near-equilibrium (van den Broeke et al. 2009). Within the first decade of the 21st century, however, a net negative balance was observed. Greenland’s present rate of ice loss is c. 250 Gt yr–1, equivalent to a sea-level rise contribution of c. 0.69 mm yr–1. The rate of ice loss has increased over the post 1992 observation period (Shepherd et al. 2012).



2021 ◽  
Author(s):  
Max Brils ◽  
Peter Kuipers Munneke ◽  
Willem Jan van de Berg ◽  
Achim Heilig ◽  
Baptiste Vandercrux ◽  
...  

<p>Recent studies indicate that a declining surface mass balance will dominate the Greenland Ice Sheet’s (GrIS) contribution to 21<sup>st</sup> century sea level rise. It is therefore crucial to understand the liquid water balance of the ice sheet and its response to increasing temperatures and surface melt if we want to accurately predict future sea level rise. The ice sheet firn layer covers ~90% of the GrIS and provides pore space for storage and refreezing of meltwater. Because of this, the firn layer can retain up to ~45% of the surface meltwater and thus act as an efficient buffer to ice sheet mass loss. However, in a warming climate this buffer capacity of the firn layer is expected to decrease, amplifying meltwater runoff and sea-level rise. Dedicated firn models are used to understand how firn layers evolve and affect runoff. Additionally, firn models are used to estimate the changing thickness of the firn layer, which is necessary in altimetry to convert surface height change into ice sheet mass loss.</p><p>Here, we present the latest version of our firn model IMAU-FDM. With respect to the previous version, changes have been made to the handling of the freshly fallen snow, the densification rate of the firn and the conduction of heat. These changes lead to an improved representation of firn density and temperature. The results have been thoroughly validated using an extensive dataset of density and temperature measurements that we have compiled covering 126 different locations on the GrIS. Meltwater behaviour in the model is validated with upward-looking GPR measurements at Dye-2. Lastly, we present an in-depth look at the evolution firn characteristics at some typical locations in Greenland.</p><p>Dedicated, stand-alone firn models offer various benefits to using a regional climate model with an embedded firn model. Firstly, the vertical resolution for buried snow and ice layers can be larger, improving accuracy. Secondly, a stand-alone firn model allows for spinning up the model to a more accurate equilibrium state. And thirdly, a stand-alone model is more cost- and time-effective to use. Firn models are increasingly capable of simulating the firn layer, but areas with large amounts of melt still pose the greatest challenge.</p>



2020 ◽  
Author(s):  
Michiel van den Broeke ◽  
Brice Noël ◽  
Leo van Kampenhout ◽  
Willem-Jan van de Berg

<p>The mass balance of the Greenland ice sheet (GrIS, units Gt per year) equals the surface mass balance (SMB) minus solid ice discharge across the grounding line. As the latter is definite positive, an important threshold for irreversible GrIS mass loss occurs when long-term average SMB becomes negative. For this to happen, runoff (mainly meltwater, some rain) must exceed mass accumulation (mainly snowfall minus sublimation). Even for a single year, this threshold has not been passed since at least 1958, the first year with reliable estimates of SMB components, although recent years with warm summers (e.g. 2012 and 2019) came close. Simply extrapolating the recent (1991-present) negative SMB trend into the future suggests that the SMB = 0 threshold could be reached before ~2040, but such predictions are extremely uncertain given the very large interannual SMB variability, the relative brevity of the time series and the uncertainty in future warming. In this study we use a cascade of models, extensively evaluated with in-situ and remotely sensed (GRACE) SMB observations, to better constrain the future regional warming threshold for the 5-year average GrIS SMB to become negative. To this end, a 1950-2100 climate change run with the global model CESM2 (app. 100 km resolution) was dynamically downscaled using the regional climate model RACMO2 (app. 11 km), which in turn was statistically downscaled to 1 km resolution. The result is a threshold regional Greenland warming of close to 4 degrees. We then use a range of CMIP5 and CMIP6 global climate models to translate the regional value into a global warming threshold for various warming scenarios, including its timing this century. We find substantial differences, ranging from stabilization before the threshold is reached in the RCP/SSP2.6 scenarios with a limited but still significant sea-level rise contribution (< 5 cm by 2100) to an imminent crossing of the warming threshold for the RCP/SSP8.5 scenarios with substantial and ever-growing contributions to sea level rise (> 10 cm by 2100). These results stress the need for strong mitigation to avoid irreversible GrIS mass loss. We finish by discussing the caveats and uncertainties of our approach.</p>



Sign in / Sign up

Export Citation Format

Share Document