scholarly journals Recession of Grasshopper Glacier, Montana, Since 1898

1986 ◽  
Vol 8 ◽  
pp. 65-68 ◽  
Author(s):  
Jane G. Ferrigno

Grasshopper Glacier is a cirque glacier in the central Rocky Mountains of the United States. It is a remnant of the “Little Ice Age”, rather than the more widespread and older Pinedale Glaciation. The glacier has not been monitored on a regular basis and very few maps have been published of the area, but it has been studied, photographed, occasionally mapped, and described by scientific and non-scientific groups, at different times since 1898. These photographic, cartographic, and written records make it possible to trace the fluctuations of this glacier since 1898. Grasshopper Glacier has had periods of positive mass balance, but the overall trend has been negative, with accelerated melting in recent years. It is estimated that Grasshopper Glacier has lost about 50% of its area and as much as 90% of its volume, since 1898. Other Rocky Mountain glaciers are experiencing similar wastage and, if current conditions continue, these glaciers will disappear by the middle of the next century.

1986 ◽  
Vol 8 ◽  
pp. 65-68 ◽  
Author(s):  
Jane G. Ferrigno

Grasshopper Glacier is a cirque glacier in the central Rocky Mountains of the United States. It is a remnant of the “Little Ice Age”, rather than the more widespread and older Pinedale Glaciation. The glacier has not been monitored on a regular basis and very few maps have been published of the area, but it has been studied, photographed, occasionally mapped, and described by scientific and non-scientific groups, at different times since 1898. These photographic, cartographic, and written records make it possible to trace the fluctuations of this glacier since 1898. Grasshopper Glacier has had periods of positive mass balance, but the overall trend has been negative, with accelerated melting in recent years. It is estimated that Grasshopper Glacier has lost about 50% of its area and as much as 90% of its volume, since 1898. Other Rocky Mountain glaciers are experiencing similar wastage and, if current conditions continue, these glaciers will disappear by the middle of the next century.


2019 ◽  
Vol 36 (E) ◽  
pp. 108-123
Author(s):  
William Ballesteros Possú ◽  
James R. Brandle ◽  
Héctor Ramiro Ordóñez

In the United States of America, agriculture is performed on large farms of monocultures, affecting ecosystems and making a great contribution to climate change. The carbon storage potential for twelve field windbreak designs containing one-, two- and three-rows and nine farmstead windbreaks encompassing three- to ten-rows of mixed tree species were analyzed in nine regions: Northern Lake States (NLS), Corn Belt (CB), Southern Plains (SP), Delta States (DS), Appalachia (AP), Rocky Mountains North (RMN), Rocky Mountains South (RMS), North East (NE), y Northern Plains (NP), using the US Forest Inventory and Analysis database and allometric equations.  Carbon storage potentials for different field windbreak designs across regions ranged from 0.3 Mg C km-1 yr-1 for a single-row small-conifer windbreak in the Northeast region to 5.8 Mg C km-1 yr-1 for a three-row tall-deciduous windbreak in the Appalachia region.  Carbon storage potentials for farmstead windbreaks ranged from 0.8 Mg C 300 m-1 yr-1 for a three-row of mixed tree species windbreak in the Rocky Mountain North to 12.7 Mg C 300-1 yr-1 for a ten-row of mixed tree species windbreak in Delta States region.


Geology ◽  
2021 ◽  
Author(s):  
Peter W. Lipman

The Southern Rocky Mountains of Colorado, United States, have the highest regional elevation in North America, but present-day crustal thickness (~42–47 km) is no greater than for the adjacent, topographically lower High Plains and Colorado Plateau. The chemistry of continental-arc rocks of the mid-Cenozoic Southern Rocky Mountain volcanic field, calibrated to compositions and Moho depths at young arcs, suggests that paleocrustal thickness may have been 20%–35% greater than at present and elevations accordingly higher. Thick mid-Cenozoic Rocky Mountain crust and high paleo-elevations, comparable to those inferred for the Nevadaplano farther west in the United States from analogous volcanic chemistry, could be consistent with otherwise-perplexing evidence for widespread rapid erosion during volcanism. Variable mid-Cenozoic crustal thickening and uplift could have resulted from composite batholith growth during volcanism, superimposed on prior crustal thickening during early Cenozoic (Laramide) compression. Alternatively, the arc–crustal thickness calibration may be inappropriate for high-potassium continental arcs, in which case other published interpretations using similar methods may also be unreliable.


2019 ◽  
Vol 19 (3) ◽  
pp. 238-257
Author(s):  
Suresh Antony

Background:In the United States, tick-borne illnesses account for a significant number of patients that have been seen and treated by health care facilities. This in turn, has resulted in a significant morbidity and mortality and economic costs to the country.Methods:The distribution of these illnesses is geographically variable and is related to the climate as well. Many of these illnesses can be diagnosed and treated successfully, if recognized and started on appropriate antimicrobial therapy early in the disease process. Patient with illnesses such as Lyme disease, Wet Nile illness can result in chronic debilitating diseases if not recognized early and treated.Conclusion:This paper covers illnesses such as Lyme disease, West Nile illness, Rocky Mountain Spotted fever, Ehrlichia, Tularemia, typhus, mosquito borne illnesses such as enteroviruses, arboviruses as well as arthropod and rodent borne virus infections as well. It covers the epidemiology, clinical features and diagnostic tools needed to make the diagnosis and treat these patients as well.


Author(s):  
Kathryn T Duncan ◽  
Meriam N Saleh ◽  
Kellee D Sundstrom ◽  
Susan E Little

Abstract Throughout North America, Dermacentor spp. ticks are often found feeding on animals and humans, and are known to transmit pathogens, including the Rocky Mountain spotted fever agent. To better define the identity and distribution of Dermacentor spp. removed from dogs and cats in the United States, ticks submitted from 1,457 dogs (n = 2,924 ticks) and 137 cats (n = 209 ticks) from veterinary practices in 44/50 states from February 2018-January 2020 were identified morphologically (n = 3,133); the identity of ticks from regions where Dermacentor andersoni (Stiles) have been reported, and a subset of ticks from other regions, were confirmed molecularly through amplification and sequencing of the ITS2 region and a 16S rRNA gene fragment. Of the ticks submitted, 99.3% (3,112/3,133) were Dermacentor variabilis (Say), 0.4% (12/3,133) were D. andersoni, and 0.3% (9/3,133) were Dermacentor albipictus (Packard). While translocation of pets prior to tick removal cannot be discounted, the majority (106/122; 87%) of Dermacentor spp. ticks removed from dogs and cats in six Rocky Mountain states (Montana, Idaho, Wyoming, Nevada, Utah, and Colorado) were D. variabilis, suggesting this species may be more widespread in the western United States than is currently recognized, or that D. andersoni, if still common in the region, preferentially feeds on hosts other than dogs and cats. Together, these data support the interpretation that D. variabilis is the predominant Dermacentor species found on pets throughout the United States, a finding that may reflect recent shifts in tick distribution.


1977 ◽  
Vol 18 (79) ◽  
pp. 325-328 ◽  
Author(s):  
W. L. Graf

AbstractEvidence from aerial photographs, maps, and field checks indicates that 319 glaciers lie in cirques of the Rocky Mountains, south of the United States-Canadian border. On a subcontinental scale, the distribution of glaciers is highly clustered, with larger and denser clusters located in the northern Rocky Mountains. Lesser concentrations of small glaciers occur in the southern Rocky Mountains. The total area of glaciers in the Rocky Mountains of the U.S.A. is 78.9 km2.


Sign in / Sign up

Export Citation Format

Share Document