scholarly journals Simulation of sea ice in the NCAR Climate System Model

1997 ◽  
Vol 25 ◽  
pp. 107-110 ◽  
Author(s):  
John W. Weatherly ◽  
Thomas W. Bettge ◽  
Bruce P. Briegleb

The Climate System Model (CSM) developed at the National Center for Atmospheric Research (NCAR) consists of atmosphere, land and ocean models, as well as a dynamic-thermodynamic sea-ice model. The results of sea-ice simulation using the first coupled climate simulation with the CSM is presented. It was found that the simulated total-ice areas in both hemispheres compared well with observations for winter, but were too large for summer. The numerical solution of the cavitating fluid dynamics was found to allow excessive ridging of ice, and an ad hoc correction was implemented. The ice velocities were realistic for the Antarctic, but for the Arctic were turned toward Alaska and Siberia by modeled winds and currents. This ice-drift pattern was reflected by ice thickness, which lacks the observed ridging near Greenland. The results illustrate the sensitivity of sea ice to the simulation of polar climate and the challenge of modeling the entire climate system.

1997 ◽  
Vol 25 ◽  
pp. 107-110 ◽  
Author(s):  
John W. Weatherly ◽  
Thomas W. Bettge ◽  
Bruce P. Briegleb

The Climate System Model (CSM) developed at the National Center for Atmospheric Research (NCAR) consists of atmosphere, land and ocean models, as well as a dynamic-thermodynamic sea-ice model. The results of sea-ice simulation using the first coupled climate simulation with the CSM is presented. It was found that the simulated total-ice areas in both hemispheres compared well with observations for winter, but were too large for summer. The numerical solution of the cavitating fluid dynamics was found to allow excessive ridging of ice, and an ad hoc correction was implemented. The ice velocities were realistic for the Antarctic, but for the Arctic were turned toward Alaska and Siberia by modeled winds and currents. This ice-drift pattern was reflected by ice thickness, which lacks the observed ridging near Greenland. The results illustrate the sensitivity of sea ice to the simulation of polar climate and the challenge of modeling the entire climate system.


2011 ◽  
Vol 24 (19) ◽  
pp. 4973-4991 ◽  
Author(s):  
Peter R. Gent ◽  
Gokhan Danabasoglu ◽  
Leo J. Donner ◽  
Marika M. Holland ◽  
Elizabeth C. Hunke ◽  
...  

The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1° results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4°-resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in CCSM4 producing El Niño–Southern Oscillation variability with a much more realistic frequency distribution than in CCSM3, although the amplitude is too large compared to observations. These changes also improve the Madden–Julian oscillation and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the Gulf Stream path and the North Atlantic Ocean meridional overturning circulation. Changes to the CCSM4 land component lead to a much improved annual cycle of water storage, especially in the tropics. The CCSM4 sea ice component uses much more realistic albedos than CCSM3, and for several reasons the Arctic sea ice concentration is improved in CCSM4. An ensemble of twentieth-century simulations produces a good match to the observed September Arctic sea ice extent from 1979 to 2005. The CCSM4 ensemble mean increase in globally averaged surface temperature between 1850 and 2005 is larger than the observed increase by about 0.4°C. This is consistent with the fact that CCSM4 does not include a representation of the indirect effects of aerosols, although other factors may come into play. The CCSM4 still has significant biases, such as the mean precipitation distribution in the tropical Pacific Ocean, too much low cloud in the Arctic, and the latitudinal distributions of shortwave and longwave cloud forcings.


1991 ◽  
Vol 15 ◽  
pp. 17-25 ◽  
Author(s):  
Chi F. Ip ◽  
William D. Hibler ◽  
Gregory M. Flato

A generalized numerical model which allows for a variety of non-linear rheologies is developed for the seasonal simulation of sea-ice circulation and thickness. The model is used to investigate the effects (such as the role of shear stress and the existence of a flow rule) of different rheologies on the ice-drift pattern and build-up in the Arctic Basin. Differences in local drift seem to be closely related to the amount of allowable shear stress. Similarities are found between the elliptical and square cases and between the Mohr-Coulomb and cavitating fluid cases. Comparisons between observed and simulated buoy drift are made for several buoy tracks in the Arctic Basin. Correlation coefficients to the observed buoy drift range from 0.83 for the cavitating fluid to 0.86 for the square rheology. The average ratio of buoy-drift distance to average model-drift distance for several buoys is 1.15 (square), 1.18 (elliptical), 1.30 (Mohr-Coulomb) and 1.40 (cavitating fluid).


2012 ◽  
Vol 25 (11) ◽  
pp. 3661-3683 ◽  
Author(s):  
Gerald A. Meehl ◽  
Warren M. Washington ◽  
Julie M. Arblaster ◽  
Aixue Hu ◽  
Haiyan Teng ◽  
...  

Results are presented from experiments performed with the Community Climate System Model, version 4 (CCSM4) for the Coupled Model Intercomparison Project phase 5 (CMIP5). These include multiple ensemble members of twentieth-century climate with anthropogenic and natural forcings as well as single-forcing runs, sensitivity experiments with sulfate aerosol forcing, twenty-first-century representative concentration pathway (RCP) mitigation scenarios, and extensions for those scenarios beyond 2100–2300. Equilibrium climate sensitivity of CCSM4 is 3.20°C, and the transient climate response is 1.73°C. Global surface temperatures averaged for the last 20 years of the twenty-first century compared to the 1986–2005 reference period for six-member ensembles from CCSM4 are +0.85°, +1.64°, +2.09°, and +3.53°C for RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively. The ocean meridional overturning circulation (MOC) in the Atlantic, which weakens during the twentieth century in the model, nearly recovers to early twentieth-century values in RCP2.6, partially recovers in RCP4.5 and RCP6, and does not recover by 2100 in RCP8.5. Heat wave intensity is projected to increase almost everywhere in CCSM4 in a future warmer climate, with the magnitude of the increase proportional to the forcing. Precipitation intensity is also projected to increase, with dry days increasing in most subtropical areas. For future climate, there is almost no summer sea ice left in the Arctic in the high RCP8.5 scenario by 2100, but in the low RCP2.6 scenario there is substantial sea ice remaining in summer at the end of the century.


2011 ◽  
Vol 4 (2) ◽  
pp. 483-509 ◽  
Author(s):  
S. J. Phipps ◽  
L. D. Rotstayn ◽  
H. B. Gordon ◽  
J. L. Roberts ◽  
A. C. Hirst ◽  
...  

Abstract. The CSIRO Mk3L climate system model is a coupled general circulation model, designed primarily for millennial-scale climate simulations and palaeoclimate research. Mk3L includes components which describe the atmosphere, ocean, sea ice and land surface, and combines computational efficiency with a stable and realistic control climatology. This paper describes the model physics and software, analyses the control climatology, and evaluates the ability of the model to simulate the modern climate. Mk3L incorporates a spectral atmospheric general circulation model, a z-coordinate ocean general circulation model, a dynamic-thermodynamic sea ice model and a land surface scheme with static vegetation. The source code is highly portable, and has no dependence upon proprietary software. The model distribution is freely available to the research community. A 1000-yr climate simulation can be completed in around one-and-a-half months on a typical desktop computer, with greater throughput being possible on high-performance computing facilities. Mk3L produces realistic simulations of the larger-scale features of the modern climate, although with some biases on the regional scale. The model also produces reasonable representations of the leading modes of internal climate variability in both the tropics and extratropics. The control state of the model exhibits a high degree of stability, with only a weak cooling trend on millennial timescales. Ongoing development work aims to improve the model climatology and transform Mk3L into a comprehensive earth system model.


2013 ◽  
Vol 40 (10) ◽  
pp. 2121-2124 ◽  
Author(s):  
Marika M. Holland ◽  
Edward Blanchard-Wrigglesworth ◽  
Jennifer Kay ◽  
Steven Vavrus

2000 ◽  
Vol 31 ◽  
pp. 348-352 ◽  
Author(s):  
David A. Bailey ◽  
Amanda H. Lynch

AbstractHigh-latitude interactions of local-scale processes in the atmosphere-ice-ocean system have effects on the local, Antarctic and global climate. Phenomena including polynyas and leads are examples of such interactions which, when combined, have a significant impact on larger scales. These small-scale features, which are typically parameterized in global models, can be explicitly simulated using high-resolution regional climate system models. As such, the study of these interactions is well suited to a regional model approach and is considered here using the Arctic Regional Climate System Model (ARCSyM). This model has been used for many simulations in the Arctic, and is now implemented for the Antarctic. Observations of such processes in the Antarctic are limited, which makes model validation difficult. However, using the best available observations for an annual cycle, we have determined a suite of model parameterization which allows us to reasonably simulate the Antarctic climate. This work considers a fine-resolution (20 km) simulation in the Cosmonaut Sea region, with the eventual goal of elucidating the mechanisms in the formation and maintenance of the sensible-heat polynya which is a regular occurrence in this area. It was found in an atmosphere-sea-ice simulation that the ocean plays an important role in regulating the sea-ice cover in this region in compensating for the cold atmospheric conditions.


2013 ◽  
Vol 7 (2) ◽  
pp. 1495-1532 ◽  
Author(s):  
B. A. Blazey ◽  
M. M. Holland ◽  
E. C. Hunke

Abstract. Sea ice cover in the Arctic Ocean is a continued focus of attention. This study assesses the capability of hindcast simulations of the Community Climate System Model (CCSM) to reproduce observed snow depths and densities overlying the Arctic Ocean sea ice. The model is evaluated using measurements provided by historic Russian polar drift stations. Following the identification of seasonal biases produced in the simulations, the thermodynamic transfer through the snow – ice column is perturbed to determine model sensitivity to these biases. This study concludes that perturbations on the order of the observed biases result in modification of the annual mean conductive flux of 0.5 W m−2 relative to an unmodified simulation. The results suggest that the ice has a complex response to snow characteristics, with ice of different thicknesses producing distinct reactions. Consequently, we suggest that the inclusion of additional snow evolution processes such as blowing snow, densification, and seasonal changes in snow conductivity in sea ice models would increase the fidelity of the model with respect to the physical system. Moreover, our results suggest that simulated high latitude precipitation biases have important effects on the simulated ice conditions, resulting in impacts on the Arctic climate in general in large-scale climate.


Sign in / Sign up

Export Citation Format

Share Document