scholarly journals Retention of pro-vitamin A carotenoid in composite bread baked with high quality cassava flour from yellow-fleshed cassava root

2018 ◽  
Vol 8 (9) ◽  
pp. 438
Author(s):  
Wasiu Awoyale ◽  
Adebayo Abass ◽  
Bussie Maziya-Dixon

Background: As one of the most widely consumed foods, bread is one of the most important agricultural products. Bread made from high-quality cassava flour is consumed in some parts of Sub-Sahara Africa (SSA). The bread has no pro-vitamin S carotenoids (pVAC) due to the use of artificial colorants. Consequently, there is a need for the use of pVAC rich foods for bread production. Foods that are rich with pro-vitamin A carotenoids can be converted into retinol in the human body and whose bioconversion contributes to the reduction of vitamin A deficiency diseases (VAD). VAD has caused annual loss of life in SSA, especially in Nigeria. The yellow-fleshed cassava root might contribute to the reduction of this disease. The high quality yellow cassava flour (YHQCF) produced from yellow-fleshed cassava root may contribute to the pVAC composition of bread. As a result, there is a need for the evaluation of the retention of pVAC in composite bread baked with high quality cassava flour from yellow-fleshed cassava roots. Methods: The YHQCF was produced from TMS01/1368 cassava variety. The bread loaves consisted of 20% and 100% YHQCF and were produced by mixing the sugar, margarine, yeast, improver, and salt with the composite flour and YHQCF respectively, after which water was added and mixed to get the homogenous dough. The dough was proofed for 2.5 hours, kneaded, cut into shape, placed in a lubricated baking pan, and baked at 200oC for 30 min. Analyses of the pro-vitamin A (cis and trans-β carotene) and dry matter content were carried out on all the samples, including samples from the YHQCF production steps using standard methods. The samples from the YHQCF production steps were chosen and analyzed for pVAC in order to check the levels of degradation of the pVAC from the raw cassava root to using the root for flour production and the quantity of pVAC retained when 100% of the YHQCF is used for bread production compared to 20% composite. The β-carotene nutrient retention of the bread was also calculated.Results: The results demonstrated how the total pVAC content of the raw yellow-fleshed cassava root was 16.83 µg/g dry basis with 29% dry matter (DM) content. Subsequent processing by peeling, washing, grating, and dewatering into granules (56% DM) caused 48% reduction in the pVAC content which was reduced to 40% after drying and milling the dried grits into YHQCF (97% DM). Preparation of recipe for bread demonstrated how the 20% composite flour dough (61% DM) contained 0.29 µg/g db pVAC representing 1.72% retention, which was later reduced to 0.25 µg/g db pVAC or 1.49% retention after baking (62%DM). On the other hand, bread loaves baked from 100% YHQCF (67% DM) retained 0.74 µg/g db pVAC representing 4.40% of the 16.83 µg/g db pVAC in the starting raw material.  Conclusions: The bread produced from 100% YHQCF may contribute to the pro-vitamin A status of bread consumers in SSA more than the 20% YHQCF composite. However, both bread samples are low in pVAC. In order to attain the required retinol equivalent level after bioconversion in the human body, consumption of other foods rich in vitamin A would be required to attain the required retinol equivalent level after bioconversion in the human body but can be enhanced if consumed with other foods rich in vitamin A.Keywords: High quality cassava flour; composite flour; Bread; Pro-vitamin A carotenoid; Nutrition

2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Arubi P. Alobo ◽  
Gibson L. Arueya

Wheat and cassava composite breads are generally associated with volume and textural defects in contrast with the traditional wheat based variants. Efforts to mitigate this challenge through use of synthetic additives have been unsuccessful owing to safety concerns. The objective of this study was to explore Grewia venusta mucilage as a potential natural additive in wheat-cassava composite bread production. Sweet cassava flour was used to replace wheat flour at 100: 0 (control), 90:10, 80:20 and 70:30% ratios in bread making. Aqueous extract of G. venusta stem bark was oven dried (50±3 oC), milled and added at 0, 1.0 and 2.0% (w/w) to the flour mixtures. These, along with other conventional inputs were mixed, and used to produce bread. Proximate compositions, physical and sensory properties of the bread loaves were evaluated. Cassava flour inclusion resulted in significant (P≤0.05) decrease in the protein content of the control from 18.1% to 12.1% (90:10%), 11.5% (80:20%) and 9.9% (70:30%). Addition of mucilage marginally increased the protein and dietary fibre contents of the loaves. Loaves containing 1-2% mucilage were more regular in shape with smoother crust than those without mucilage. Cassava flour addition at 10%, 20% and 30% decreased loaf height from 6.0 cm to 5.8 cm, 5.7 cm and 5.5 cm, as well as loaf volume from 815.5 cm3 to 783.1 cm3, 776.8 cm3 and 744.5 cm3, respectively. Mucilage inclusion resulted in increased heights and volumes of the loaves and reduced weights of loaf fragments upon slicing. The mucilage significantly improved the texture of the bread loaves. 


Author(s):  
Wasiu Awoyale ◽  
Adebayo B. Abass ◽  
Paul Amaza ◽  
Olayemi Oluwasoga ◽  
Gregory Nwaoliwe

With proper processing and utilization, biofortified cassava may contribute to the nutritional status of the consumers, thus, the need for this study. High-quality cassava flour from white- (TME 419) and biofortified (TMS 01/1368) cassava varieties were produced at a commercial processing factory, after which the flour is composite with wheat flour to produce bread. The nutritional composition, physical properties and sensory quality of the composite bread were analyzed using standard methods. Results showed that composite bread from 20% biofortified cassava flour (20-YCF) had a higher value of total β-carotene (0.74 μg/g), moisture (37.83%) and ash (2.29%) contents. The fat (3.72%) and protein (12.83%) contents were higher in 20% white cassava flour (20-WCF) composite bread. The 20-YCF composite bread had the highest loaf volume (3286.2 cm3), elasticity (6.32), chewiness (40.51 N) and gumminess (6.41), 20-WCF composite bread had higher specific volume (3.59 cm3/g) and hardness (176.50 N). The 100% wheat bread had higher cohesiveness (0.10) and loaf weight (932.35 g). A significant negative correlation (r = - 0.98, p≤0.05) exist between bread hardness and protein content. The composite bread compared favourably with the 100% wheat bread in terms of weight and aroma, but, the 100% wheat bread was more acceptable.


Author(s):  
M. S. Afolabi ◽  
O. B. Bello ◽  
G. O. Agbowuro ◽  
C. O. Aremu ◽  
M. O. Akoroda

Roots of orange-fleshed sweet potato varieties currently available in Nigeria contain high quantities of β-carotene or pro-vitamin A but have high moisture content. These varieties have been found to be a cheap and crucially important remedy for vitamin A deficiency. The cream or white-fleshed varieties, on the other hand, have a sweet taste with high dry matter content, giving a dry texture, a quality trait preferred in Nigeria. Development of sweet potato genotypes that can combine these two important quality traits is the objective of this breeding work. A diallel experiment using six parental sweet potato genotypes crossed in all possible combinations were carried out and thirty progenies were evaluated for beta carotene (β-carotene) and dry matter content in Landmark University, Omu Aran, Kwara State, Nigeria. The 30 F1 progenies along with their parental lines were planted in the same field trial. The trial was laid out in 6 x 6 triple lattice in two replications. Highly significant (P≤ 0.01) differences were observed among the genotypes for the traits. The average β-carotene content among the progenies was 2.86 (mg/100g.f.w) while the dry matter cttgontent had a mean value of 31.89%. The cross progenies 199024.2 x Excel had the highest beta carotene (14.37mg/100g.f.w) content with the highest dry matter content (40.10%) and are therefore recommended for further evaluation.


2021 ◽  
Vol 19 (1) ◽  
pp. 53-61
Author(s):  
M.S Afolabi ◽  
G.O Agbowuro ◽  
A.E Salami ◽  
M.O Akoroda

Roots of orange fleshed sweet potato varieties currently available in Nigeria contain high quantities of β-carotene or pro-vitamin A but have high moisture content. These varieties have been found to be a cheap and important remedy for vitamin A deficiency. The cream or white fleshed varieties on the other hand, have sweet taste with high dry matter content, giving a dry texture, a quality trait preferred in Nigeria. The objectives of this study were to examine the quantitative inheritance of important traits in sweet potato by means of a diallel analysis with a view to estimating the GCA and SCA components of genetic variance, and to determine the associated type of gene action controlling β-carotene content and root dry mass. A diallel crosses experiment using six parental sweet potato genotypes crossed in all possible combinations were carried out. Resultant thirty progenies were evaluated for beta carotene (β-carotene) and dry matter content in Landmark University, Omu Aran, Kwara State, Nigeria during the cropping season of 2012 and 2013. The 30 F1 progenies along with their parental lines were planted in the same field trial. The trial was laid out in 6 x 6 triple lattice in two replications. Highly significant (P≤ 0.01) differences were observed among the genotypes for all the tested traits. The average β-carotene content for the progenies was 2.86 (mg/100 g f.w.) while the dry matter content was 31.89%. The cross combination 199024.2 x Excel recorded the highest beta carotene (14.37 mg/100 g f.w) and dry matter content (40.10%), this candidate is therefore suggested for further evaluation. Key words: Diallel analysis, Dry matter, Southern Guinea Savanna, Sweet potato, Vitamin A, β-carotene.


2017 ◽  
Vol 7 (2) ◽  
pp. 115-134 ◽  
Author(s):  
Victor Owusu ◽  
Enoch Owusu-Sekyere ◽  
Emmanuel Donkor ◽  
Nana Ama Darkwaah ◽  
Derrick Adomako-Boateng Jr

Purpose The purpose of this paper is to evaluate consumers’ willingness to pay (WTP) for composite flour bread produced with a blend of 15-40 per cent cassava flour blended with wheat flour in Ghana. Design/methodology/approach The analysis is based on interviews with 350 consumers in the Ashanti and Eastern Regions of Ghana to assess their awareness, perceptions and WTP for cassava-wheat composite bread. From these consumer interviews, a hedonic regression model was applied to evaluate consumers’ WTP for various attributes of composite flour bread. Price-related and health-related perceptions of consumers on cassava-wheat composite bread were investigated with perception indices. Multi-attribute preference-based contingent ratings that rate product attributes in terms of importance to consumers was employed. The implicit prices of the product attributes representing the contribution of the product attributes to the WTP amount were also computed. Findings The paper finds that consumers who are aware of cassava-blended flour bread and who like its taste and texture are willing to pay more than consumers who are unaware. This leads to a policy recommendation advocating increased advertising of the economic and nutritional benefits of cassava-wheat blended composite flour bread. Research limitations/implications Future studies should explore the choice experiments to examine preferences for the food product. Originality/value This paper evaluates consumers’ WTP for composite flour bread produced with a blend of 15-40 per cent cassava flour and wheat flour. Given widespread reliance on imported wheat flour and the simultaneously large volumes of locally available cassava, it is important to consider opportunities for import substitution (and possible cost reduction for consumers) of blended flour products such as cassava-wheat composite flours. Nigeria has imposed a 10 per cent blending requirement for this reason. Ghana has taken important measures recently for the development of high-quality cassava flour, and so research on its potential and actual uptake is welcomed and highly relevant to food security and agribusiness development.


Author(s):  
Olawale Paul Olatidoye ◽  
Abdulrazak Shittu ◽  
Sunday Samuel Sobowale ◽  
Wasiu Ajani Olayemi ◽  
Isi Favour Adeluka

High quality cassava flour (HQCF) is now widely used production of baked foods in Nigeria but bread quality is impaired when it is used in the bread formulation. In order to overcome this problem, six breads samples were produced from wheat/HQCF/hydrocolloid:T0100%wheat flour(control);T190:9:CMC;T290:9:GG;T3,80:18:CMC;T4,80:18:GG;T570:27:CMC;T670:27:GG. The flour blends were analyzed for functional, colour and pasting properties while breads characteristics and sensory evaluation were performed in order to assess effect of hydrocolloids on bread. The results showed composite flour with hydrocolloids had the highest bulk density (0.704g/ml), water absorption capacity (2.98m/g), least gelation concentration (4.4g/g), oil absorption capacity (0.71m/g), while control had the highest swelling capacity (1.68g/g). Significant differences at p<0.05 were found on the pasting properties of addition of hydrocolloids with lower pasting temperature (71oC) and time (6.08 min). Bread quality attributes such as loaf volume, specific loaf volume, oven spring, crust colour, crumb colour and firmness of the fresh breads significantly improved with the addition of hydrocolloids compared with bread produced without improvers. The results show that high quality cassava flour could be incorporated up to 18% with carboxymethylcellulose at 2% level without affecting its overall acceptability and thereby enhance the potential for using locally produced flours in bread baking. Sensory score of bread from the addition of hydrocolloids were all acceptable by the panelist. The addition of hydrocolloids could be used as an effective means of improving the quality of gluten free bread.


2010 ◽  
Vol 6 (3) ◽  
Author(s):  
Davdmary E Cueto Bautista ◽  
Elevina E Pérez

Cassava root is an important staple food in tropical areas, where the cultivation of wheat is scarce. The transformation of cassava by conventional and established methods; manufacturing it into flour, add value and making it non perishable. The goals of the study were to evaluate the approximate composition and rheological properties of cassava flours and a ready to bake cake mix elaborated from composite flour [wheat: cassava(70:30)]. Cassava flour elaborated from the edible portion of root sweet clones was used to obtain the ready to bake cake mix. The results demonstrated that cassava flour shows a non Newtonian pseudoplastic behavior that is typical starchy flour characteristic. Also the amylographic profiles were similar in both types of flour. Also, the cake mix shows a Farinographic Type I curve. The texture profile of the composite flour cake had shown less firmness and chewiness but more cohesiveness, and elasticity than the 100 percent wheat flour cake. The composite flour cake was accepted as well as the 100 percent wheat flour cake by judge scores.


HortScience ◽  
2011 ◽  
Vol 46 (3) ◽  
pp. 348-357 ◽  
Author(s):  
Silver Tumwegamire ◽  
Regina Kapinga ◽  
Patrick R. Rubaihayo ◽  
Don R. LaBonte ◽  
Wolfgang J. Grüneberg ◽  
...  

The present study evaluated selected East African (EA) sweetpotato varieties for storage root dry matter and nutrient content and obtained information on the potential contributions of the varieties to alleviate vitamin A and mineral deficiencies. Roots obtained from 89 farmer (white- and orange-fleshed) varieties and one introduced variety (‘Resisto’) were analyzed for storage root quality using near-infrared reflectance spectroscopy technology. Location differences were only significant for starch content. The variance was significant (P < 0.01) for all the traits except sucrose content. Overall, the farmer varieties had higher dry matter, higher starch, and lower sucrose contents than the control clone, ‘Resisto’. It is these qualities that make sweetpotato attractive as a starchy staple in EA. A low population's mean β-carotene content (19.0 ppm) was observed. However, deep orange-fleshed farmer varieties, ‘Carrot_C’, ‘Ejumula’, ‘Carrot Dar’, ‘Mayai’, and ‘Zambezi’, had β-carotene content that can meet 350% or greater of recommended daily allowance (RDA) with 250-g serving to a 5- to 8–year-old child. More but light orange-fleshed farmer varieties ‘K-118’, ‘K-134’, ‘K-46’, ‘KMI61’, ‘MLE162 Nakahi’, ‘PAL161’, ‘Sowola6’, ‘Sponge’, ‘SRT34 Abuket2’, ‘SRT35 Anyumel’, ‘SRT52’, and ‘Sudan’ can provide 50% to 90% RDA of pro-vitamin A for the child. The root minerals’ content was generally low except for magnesium whose content can meet 50% or greater RDA in many farmer varieties. However, in areas with high sweetpotato consumption, varieties ‘Carrot_C’, ‘Carrot Dar’, ‘KRE nylon’, ‘MLE163 Kyebandula’, and ‘SRT49 Sanyuzameza’ can make good intakes of iron, zinc, calcium, and magnesium. In conclusion, some EA farmer varieties can contribute greatly to alleviation of vitamin A deficiency and substantial mineral intakes.


Sign in / Sign up

Export Citation Format

Share Document