scholarly journals Methodology for determining the parameters of drilling mode for directional straight sections of well using screw downhole motors

2020 ◽  
Vol 241 ◽  
pp. 105 ◽  
Author(s):  
V. Litvinenko ◽  
M. Dvoinikov

Article presents results of study on possibility of increasing the efficiency of drilling directional straight sections of wells using screw downhole motors (SDM) with a combined method of drilling with rotation of drilling string (DS). Goal is to ensure steady-state operation of SDM with simultaneous rotation of DS by reducing the amplitude of oscillations with adjusting the parameters of drilling mode on the basis of mathematical modeling for SDM – DS system.Results of experimental study on determination of extrema distribution of lateral and axial oscillations of SDM frame depending on geometrical parameters of gerotor mechanism and modes ensuring stable operation are presented.Approaches to development of a mathematical model and methodology are conceptually outlined that allow determining the range of self-oscillations for SDM – DS system and boundaries of rotational and translational wave perturbations for a heterogeneous rod with an installed SDM at drilling directional straight sections of well. This mathematical model of SDM – DS system's dynamics makes it possible to predict optimal parameters of directional drilling mode that ensure stable operation of borehole assembly.  

2018 ◽  
Vol 68 (3) ◽  
pp. 95-110
Author(s):  
Hoxha Gëzim ◽  
Shala Ahmet ◽  
Likaj Ramë ◽  
Bajrami Xhevahir

AbstractThis paper treats influencing factors in the determination of vehicles speed on the pedestrian crash moment according to pedestrian throw distance and formulates a mathematical model for vehicle speed determination. Vehicle speed is one of the highest causes of accidents. The mathematical model formulation (as the target of this paper) for velocity calculation, in the case of pedestrian accidents, presents great help and guidance to experts of this field when dealing with accident analysis that through accurate determination of this parameter to find other circumstances as close as possible to the technical process of pedestrian accidents. The target of this paper is to define a mathematical model formulation for vehicle velocity calculation in pedestrian crash moment depending on relevant parameters. For the purpose of model formulating, we have selected three cases of real accidents that involved vehicles (“Peugeot 307”, “VW Golf ” and “Mercedes E 220”) with different geometrical parameters of the front profile and pedestrians with different heights and weights. For regression analysis we used “R” and “SPSS” software, which enables the statistical analysis of the data and mathematical model formulation. Also, for analysis of impact of relevant factors, model formulation and model testing have used “Virtual Crash” and “PC Crash” software, which enables pedestrian-vehicle crash simulation using vehicles with real technical characteristics and various pedestrian characteristics. Inductive, comparative, and deductive methods are part of the research methods in this paper.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3317
Author(s):  
Jan Górecki ◽  
Krzysztof Talaśka ◽  
Krzysztof Wałęsa ◽  
Dominik Wilczyński ◽  
Dominik Wojtkowiak

The article presents a formulated mathematical model that enables the determination of the required compressive force in the extrusion process of dry ice employing multichannel dies. This is the main parameter in the piston-based dry ice extrusion process. The indicated model was developed for the purpose of further improvement of the energy efficiency of this extrusion process. It allows for the determination of the value of compressive force by accounting for 12 variables related to the geometrical parameters of the die and the physical characteristics of dry ice. Furthermore, the paper also provides descriptions of the empirical study methodologies together with the results. These were carried out in order to determine the difference between the results of mathematical modeling and actual measurement results. The final part of the article presents the results of the analysis of the mathematical model’s sensitivity to the change of the physical characteristics of dry ice. The formulated tool may be employed to adapt the geometric parameters of the die in order to obtain the desired compressive force value and dry ice granulation with reduced energy consumption.


2012 ◽  
Vol 15 (1) ◽  
pp. 80-89
Author(s):  
Tuyen Vo ◽  
Nam Thanh Nguyen ◽  
Lien Duc Hoang

In order to determine the optimal parameters of irrigation process in order to verify the accuracy of the numerical simulation results of experimental determination of the effective spray during irrigation [2], [6]. This paper will conduct empirical planning, establishing empirical mathematical model to determine the diameter of the nozzle, swirl coefficient and irrigation output according to the uniformity.


Energetika ◽  
2020 ◽  
Vol 66 (1) ◽  
Author(s):  
Olexander Brunetkin ◽  
Yevhenii Dobrynin ◽  
Andrii Maksymenko ◽  
Oksana Maksymova ◽  
Svitlana Alyokhina

In the paper, the cause that makes it difficult to use uncertified fuels has been identified – the uncertainty and variability of their composition. The mathematical model and the method that allow one to determine such a fuel composition in the combustion process are developed. Optimal parameters of the combustion process are proposed. The limitations imposed by the model on the method used are determined.


2020 ◽  
Vol 0 (2(43)) ◽  
pp. 62-66
Author(s):  
Олександр Йосипович Дідоборець ◽  
Олександр Миколайович Клєцков ◽  
Віталій Іванович Цоцко

Author(s):  
Olexandr Pavlenko ◽  
Serhii Dun ◽  
Maksym Skliar

In any economy there is a need for the bulky goods transportation which cannot be divided into smaller parts. Such cargoes include building structures, elements of industrial equipment, tracked or wheeled construction and agricultural machinery, heavy armored military vehicles. In any case, tractor-semitrailer should provide fast delivery of goods with minimal fuel consumption. In order to guarantee the goods delivery, tractor-semitrailers must be able to overcome the existing roads broken grade and be capable to tow a semi-trailer in off-road conditions. These properties are especially important for military equipment transportation. The important factor that determines a tractor-semitrailer mobility is its gradeability. The purpose of this work is to improve a tractor-semitrailer mobility with tractor units manufactured at PJSC “AutoKrAZ” by increasing the tractor-semitrailer gradeability. The customer requirements for a new tractor are determined by the maximizing the grade to 18°. The analysis of the characteristics of modern tractor-semitrailers for heavy haulage has shown that the highest rate of this grade is 16.7°. The factors determining the limiting gradeability value were analyzed, based on the tractor-semitrailer with a KrAZ-6510TE tractor and a semi-trailer with a full weight of 80 t. It has been developed a mathematical model to investigate the tractor and semi-trailer axles vertical reactions distribution on the tractor-semitrailer friction performances. The mathematical model has allowed to calculate the gradeability value that the tractor-semitrailer can overcome in case of wheels and road surface friction value and the tractive force magnitude from the engine. The mathematical model adequacy was confirmed by comparing the calculations results with the data of factory tests. The analysis showed that on a dry road the KrAZ-6510TE tractor with a 80 t gross weight semitrailer is capable to climb a gradient of 14,35 ° with its coupling mass full use condition. The engine's maximum torque allows the tractor-semitrailer to overcome a gradient of 10.45° It has been determined the ways to improve the design of the KrAZ-6510TE tractor to increase its gradeability. Keywords: tractor, tractor-semitrailer vehicle mobility, tractor-semitrailer vehicle gradeability.


Author(s):  
K. H. Levchyk ◽  
M. V. Shcherbyna

A technical solution is proposed for the elimination the grabbing of drilling tool, based on the use of energy due to the circulation of the drilling fluid. The expediency eliminating the grabbing drilling tool using the hydro-impulse method is substantiated. A method of drawing up a mathematical model for the dynamic process of a grabbing string of drill pipes in the case of perturbation of hydro-impulse oscillations in the area of the productive rock layer is developed. The law of longitudinal displacements arising in the trapped string is obtained, which allows choosing the optimal geometrical parameters of the passage channels and the frequency rotational of shutter for these channels. Recommendations for using this method for practical use have been systematized.


Sign in / Sign up

Export Citation Format

Share Document