scholarly journals A New Range of Chitosan Based Nano-antiviral Agents

2021 ◽  
Vol 13 (1-2) ◽  
Author(s):  
Julio Garay-Jimenez

ABSTRACT The current study involves the synthesis of fourteen analogs of oligochitosan and their screening for antiviral potential against human immunodeficiency virus (HIV), respiratory syncytial virus (RSV) and Coxsackie virus. The synthesized oligochitosan analogs were characterized by nuclear magnetic resonance (NMR) and FTIR techniques. HIV-1 p24 ELISA was performed using HIV-1 p24 antigen capture assay in order to estimate the viral infectivity loss. It was observed that sulfated oligochitosan was devoid of antiviral activity as compared to oligochitosan UN102 analog. The rest of UN102 analogs which include N-thiol (UN105), N-glutaryl (UN106), N-Azido (UN111) and N-phthaloyl (UN114) and N-citric analog (UN117) exhibited antiviral activity against HIV. The UN102 also decreased viral infection caused by RSV. In addition, UN102 was found to bind Coxsackie virus, which causes autoimmune myocarditis. The findings were of great interest to proceed for the development of novel antiviral agents.

1998 ◽  
Vol 9 (5) ◽  
pp. 403-411 ◽  
Author(s):  
M Witvrouw ◽  
D Daelemans ◽  
C Pannecouque ◽  
J Neyts ◽  
G Andrei ◽  
...  

The fluoroquinolone derivatives have been shown to inhibit human immunodeficiency virus (HIV) replication at the transcriptional level. We confirmed the anti-HIV activity of the most potent congener, 8-difluoromethoxy-1-ethyl-6-fluoro-1,4-dihydro-7-[4-(2-methoxyphenyl)-1-piperazinyl]-4-quinolone-3-carboxylic acid (K-12), in both acutely and chronically infected cells. K-12 was active against different strains of HIV-1 (including AZT-and ritonavir-resistant HIV-1 strains), HIV-2 and simian immunodeficiency virus, in MT-4, CEM, C8166 and peripheral blood mononuclear cells. In all of these antiviral assay systems, K-12 showed a similar activity (EC50 0.2–0.6 μM). K-12 inhibited Moloney murine sarcoma virus-induced transformation of C3H/3T3 cells with an EC50 of 6.9 μM. Also, K-12 proved inhibitory to herpesvirus saimiri, human cytomegalovirus, varicella-zoster virus and herpes simplex virus types 1 and 2 (in order of decreasing sensitivity), but was not inhibitory (at subtoxic concentrations) to human herpesvirus type 8 (as evaluated in BCBL-1 cells), vaccinia virus, Sindbis virus, vesicular stomatitis virus, respiratory syncytial virus, Coxsackie virus, Punta Toro virus, parainfluenza virus or reovirus. Time-of-addition experiments and quantitative transactivation bioassays indicated that K-12 inhibits the Tat-mediated transactivation process in HIV-infected cells.


1992 ◽  
Vol 3 (1) ◽  
pp. 55-63 ◽  
Author(s):  
A. R. Neurath ◽  
N. Strick ◽  
P. Haberfield ◽  
S. Jiang

Recent observations that haernin inhibited the replication of the human immunodeficiency virus (HIV-1) and the reaction between the HIV-1 envelope glycoprotein gp120 and antibodies specific for the V3 hypervariable loop of this glycoprotein were an enticement to determine whether or not additional porphyrins had similar activities. Several porphyrin derivatives, particularly meso-tetra (4-carboxyphenyl) porphine, were more potent inhibitors of HIV-1 replication than haernin. They blocked the binding of homologous antibodies to synthetic peptides corresponding to V3 hypervariable loops of 21 distinct HIV-1 isolates, and inhibited the replication in lymphocytic (MT-2) and promonocyte (U937) cell lines of several HIV-1 isolates, tested (IIIB, RF, SF-2, and MN). Compounds with inhibitory activity had a tetrapyrrole ring and, carboxyl or sulphonate groups. However, antiviral activity depended on minor structural difference's between distinct derivatives endowed with these two features. Metalloporphyrins had a drastically reduced antiviral activity in comparison with the corresponding porphyrins. An understanding of the relationship between the structure of porphyrins and their antiviral effects, perceptible from the results presented, is expected to lead to the design of additional derivatives with more potent antiviral activity and to unravelling of molecular details involved in the association between the V3 loop of gp120 and antiviral compounds targeted to this loop.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1258
Author(s):  
Mahesh Kasthuri ◽  
Chengwei Li ◽  
Kiran Verma ◽  
Olivia Ollinger Russell ◽  
Lyndsey Dickson ◽  
...  

Nucleoside analogs are widely used for the treatment of viral diseases (Hepatitis B/C, herpes and human immunodeficiency virus, HIV) and various malignancies. ALS-8176, a prodrug of the 4′-chloromethyl-2′-deoxy-2′-fluoro nucleoside ALS-8112, was evaluated in hospitalized infants for the treatment of respiratory syncytial virus (RSV), but was abandoned for unclear reasons. Based on the structure of ALS-8112, a series of novel 4′-modified-2′-deoxy-2′-fluoro nucleosides were synthesized. Newly prepared compounds were evaluated against RSV, but also against a panel of RNA viruses, including Dengue, West Nile, Chikungunya, and Zika viruses. Unfortunately, none of the compounds showed marked antiviral activity against these viruses.


2020 ◽  
Vol 16 (3) ◽  
pp. 368-384
Author(s):  
Nikolaos Kollatos ◽  
Christos Mitsos ◽  
Stella Manta ◽  
Niki Tzioumaki ◽  
Christos Giannakas ◽  
...  

Background: Nucleoside analogues are well-known antitumor, antiviral, and chemotherapeutic agents. Alterations on both their sugar and the heterocyclic parts may lead to significant changes in the spectrum of their biological activity and the degree of selective toxicity, as well as in their physicochemical properties. Methods: C5-arylalkynyl-β-D-ribofuranonucleosides 3-6, 3΄-deoxy 12-15, 3΄-deoxy-3΄-C-methyl- β-D-ribofurananucleosides 18-21 and 2΄-deoxy-β-D-ribofuranonucleosides 23-26 of uracil, were synthesized using a one-step Sonogashira reaction under microwave irradiation and subsequent deprotection. Results: All newly synthesized nucleosides were tested for their antitumor or antiviral activity. Moderate cytostatic activity against cervix carcinoma (HeLa), murine leukemia (L1210) and human lymphocyte (CEM) tumor cell lines was displayed by the protected 3΄-deoxy derivatives 12b,12c,12d, and the 3΄-deoxy-3΄-methyl 18a,18b,18c. The antiviral evaluation revealed appreciable activity against Coxsackie virus B4, Respiratory syncytial virus, Yellow Fever Virus and Human Coronavirus (229E) for the 3΄-deoxy compounds 12b,14, and the 3΄-deoxy-3΄-methyl 18a,18c,18d, accompanied by low cytotoxicity. Conclusion: This report describes the total and facile synthesis of modified furanononucleosides of uracil, with alterations on both the sugar and the heterocyclic portions. Compounds 12b,14 and 18a,c,d showed noticeable antiviral activity against a series of RNA viruses and merit further biological and structural optimization investigations.


1993 ◽  
Vol 13 (3) ◽  
pp. 185-192 ◽  
Author(s):  
Malamachanahalli B. Vasudevachari ◽  
Norman P. Salzman ◽  
Daniel R. Woll ◽  
Christopher Mast ◽  
Katharina W. Uffelman ◽  
...  

1992 ◽  
Vol 85 (Supplement) ◽  
pp. 3S-42
Author(s):  
David Ascher ◽  
Chet Roberts ◽  
Arnold Fowler

2007 ◽  
Vol 51 (11) ◽  
pp. 4036-4043 ◽  
Author(s):  
Serge Dandache ◽  
Guy Sévigny ◽  
Jocelyn Yelle ◽  
Brent R. Stranix ◽  
Neil Parkin ◽  
...  

ABSTRACT Despite the success of highly active antiretroviral therapy, the current emergence and spread of drug-resistant variants of human immunodeficiency virus (HIV) stress the need for new inhibitors with distinct properties. We designed, produced, and screened a library of compounds based on an original l-lysine scaffold for their potentials as HIV type 1 (HIV-1) protease inhibitors (PI). One candidate compound, PL-100, emerged as a specific and noncytotoxic PI that exhibited potent inhibition of HIV-1 protease and viral replication in vitro (Ki , ∼36 pM, and 50% effective concentration [EC50], ∼16 nM, respectively). To confirm that PL-100 possessed a favorable resistance profile, we performed a cross-resistance study using a panel of 63 viral strains from PI-experienced patients selected for the presence of primary PI mutations known to confer resistance to multiple PIs now in clinical use. The results showed that PL-100 retained excellent antiviral activity against almost all of these PI-resistant viruses and that its performance in this regard was superior to those of atazanavir, amprenavir, indinavir, lopinavir, nelfinavir, and saquinavir. In almost every case, the increase in the EC50 for PL-100 observed with viruses containing multiple mutations in protease was far less than that obtained with the other drugs tested. These data underscore the potential for PL-100 to be used in the treatment of drug-resistant HIV disease and argue for its further development.


2003 ◽  
Vol 47 (10) ◽  
pp. 3123-3129 ◽  
Author(s):  
Yasuhiro Koh ◽  
Hirotomo Nakata ◽  
Kenji Maeda ◽  
Hiromi Ogata ◽  
Geoffrey Bilcer ◽  
...  

ABSTRACT We designed, synthesized, and identified UIC-94017 (TMC114), a novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) containing a 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane (bis-THF) and a sulfonamide isostere which is extremely potent against laboratory HIV-1 strains and primary clinical isolates (50% inhibitory concentration [IC50], ∼0.003 μM; IC90, ∼0.009 μM) with minimal cytotoxicity (50% cytotoxic concentration for CD4+ MT-2 cells, 74 μM). UIC-94017 blocked the infectivity and replication of each of HIV-1NL4-3 variants exposed to and selected for resistance to saquinavir, indinavir, nelfinavir, or ritonavir at concentrations up to 5 μM (IC50s, 0.003 to 0.029 μM), although it was less active against HIV-1NL4-3 variants selected for resistance to amprenavir (IC50, 0.22 μM). UIC-94017 was also potent against multi-PI-resistant clinical HIV-1 variants isolated from patients who had no response to existing antiviral regimens after having received a variety of antiviral agents. Structural analyses revealed that the close contact of UIC-94017 with the main chains of the protease active-site amino acids (Asp-29 and Asp-30) is important for its potency and wide spectrum of activity against multi-PI-resistant HIV-1 variants. Considering the favorable pharmacokinetics of UIC-94017 when administered with ritonavir, the present data warrant that UIC-94017 be further developed as a potential therapeutic agent for the treatment of primary and multi-PI-resistant HIV-1 infections.


2019 ◽  
Vol 39 (9) ◽  
Author(s):  
Olfa Mzoughi ◽  
Meritxell Teixido ◽  
Rémi Planès ◽  
Manutea Serrero ◽  
Ibtissem Hamimed ◽  
...  

Abstract The trimeric heptad repeat domains HR1 and HR2 of the human immunodeficiency virus 1 (HIV-1) gp41 play a key role in HIV-1-entry by membrane fusion. To develop efficient inhibitors against this step, the corresponding trimeric-N36 and C34 peptides were designed and synthesized. Analysis by circular dichroism of monomeric and trimeric N36 and C34 peptides showed their capacities to adopt α-helical structures and to establish physical interactions. At the virological level, while trimeric-C34 conserves the same high anti-fusion activity as monomeric-C34, trimerization of N36-peptide induced a significant increase, reaching 500-times higher in anti-fusion activity, against R5-tropic virus-mediated fusion. This result was associated with increased stability of the N36 trimer peptide with respect to the monomeric form, as demonstrated by the comparative kinetics of their antiviral activities during 6-day incubation in a physiological medium. Collectively, our findings demonstrate that while the trimerization of C34 peptide had no beneficial effect on its stability and antiviral activity, the trimerization of N36 peptide strengthened both stability and antiviral activity. This approach, promotes trimers as new promising HIV-1 inhibitors and point to future development aimed toward innovative peptide fusion inhibitors, microbicides or as immunogens.


Sign in / Sign up

Export Citation Format

Share Document