scholarly journals Analisis Pengaruh Sedimen Terhadap Kerusakan Material Pada Runner Turbin Air

2021 ◽  
Vol 19 (1) ◽  
pp. 42
Author(s):  
Sri Suwasti ◽  
Andi Suci Pratiwi ◽  
Farid Mansur

Dampak yang ditimbulkan oleh sedimen tidak hanya abrasi dan erosi terhadap lingkungan, melainkan juga terjadi abrasi dan erosi pada sudu turbin. Konsentrasi sedimen yang tinggi  dapat mengakibatkan abrasi dan erosi pada sudu turbin. Selain konsentrasi, ukuran sedimen juga dapat menimbulkan mikroerosi pada sudu turbin. Penelitian ini bertujuan mengidentifikasi penyebab dan pengaruhnya terhadap kerusakan sudu turbin. Di samping itu, juga bertujuan menentukan pengaruh konsentrasi sedimen terhadap kerusakan sudu turbin. Pengujian dilakukan dengan empat variasi konsentrasi sedimen (5%, 8%, 10% dan 12%).Pengujian morfologi mikroerosi dengan menggunakan Microscopy Digital Sistem Akuisisi Data di Laboratorium Sistem Pembangkit Energi Jurusan Teknik Mesin Politeknik Negeri Ujung Pandang. Pada pengujian morfologi mikro erosi di dapatkan hasil bahwa semakin besar konsentrasi yang di berikan semakin cepat pula terjadi kerusakan pada material. Kerusakan yang terjadi pada material carbon steel akibat adanya tumbukan air yang mengandung sedimen ialah abrasi dan erosi dengan variasi konsentrasi sedimen dan waktu yang sama. Material yang lebih cepat mengalami kerusakan terjadi pada material carbon steel diakibatkan sifat fisik pada material carbon steel lebih rendah dibandingkan dengan sifat material stainless steel. 

Author(s):  
Y. L. Chen ◽  
J. R. Bradley

Considerable effort has been directed toward an improved understanding of the production of the strong and stiff ∼ 1-20 μm diameter pyrolytic carbon fibers of the type reported by Koyama and, more recently, by Tibbetts. These macroscopic fibers are produced when pyrolytic carbon filaments (∼ 0.1 μm or less in diameter) are thickened by deposition of carbon during thermal decomposition of hydrocarbon gases. Each such precursor filament normally lengthens in association with an attached catalyst particle. The subject of filamentous carbon formation and much of the work on characterization of the catalyst particles have been reviewed thoroughly by Baker and Harris. However, identification of the catalyst particles remains a problem of continuing interest. The purpose of this work was to characterize the microstructure of the pyrolytic carbon filaments and the catalyst particles formed inside stainless steel and plain carbon steel tubes. For the present study, natural gas (∼; 97 % methane) was passed through type 304 stainless steel and SAE 1020 plain carbon steel tubes at 1240°K.


2014 ◽  
Vol 2 (1) ◽  
pp. 59-76
Author(s):  
Abdullah Daie'e Assi

This research deals with the choice of the suitable filler metal to weld the similar and dissimilar metals (Low carbon steel type A516 & Austenitic stainless steel type 316L) under constant conditions such as, plate thickness (6 mm), voltage (78 v), current (120 A), straight polarity. This research deals with three major parts. The first parts Four types of electrodes were used for welding of dissimilar metals (C.St A516 And St.St 316L) two from mild steel (E7018, E6013) and other two from austenitic stainless steel (E309L, E308L) various inspection were carried out include (Visual T., X-ray T., δ- Ferrite phase T., and Microstructures T.) and mechanical testing include (tensile T., bending T. and micro hardness T.) The second parts done by used the same parameters to welding similar metals from (C.St A516) Or (St.St 316L). The third parts deals with welding of dissimilar weldments (C.St And St.St) by two processes, gas tungsten are welding (GTAW) and shielded metal are welding (SMAW).        The results indicated that the spread of carbon from low carbon steel to the welding zone in the case of welding stainless steel elect pole (E309L) led to Configuration Carbides and then high hardness the link to high values ​​compared with the base metal. In most similar weldments showed hardness of the welding area is  higher than the hardness of the base metal. The electrode (E309L) is the most suitable to welding dissimilar metals from (C.St A516 With St.St 316L). The results also showed that the method of welding (GTAW) were better than the method of welding (SMAW) in dissimilar welded joints (St.St 316L with C.St A516) in terms of irregular shape and integrity of the welding defects, as well as characterized this weldments the high-lift and resistance ductility good when using the welding conditions are similar.


Alloy Digest ◽  
2013 ◽  
Vol 62 (2) ◽  

Abstract ATI 409HP (UNS S40900) ferritic stainless steel was introduced by ATI Allegheny Ludlum to provide improved oxidation and corrosion resistance for automotive exhaust systems in comparison to carbon steel. The alloy was designated "MF-1", indicating its end use: automotive mufflers. The good fabricability of this alloy, combined with its basic corrosion resistance and economy have significantly broadened the utility of ATI 409HP stainless steel. ATI 409HP consists of four grades: UNS S40900, S40910, S40920, and S40930. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, machining, and joining. Filing Code: SS-1135. Producer or source: Allegheny Technologies Inc..


Alloy Digest ◽  
1996 ◽  
Vol 45 (7) ◽  

Abstract Sandvik 3R12/4L7 is a composite tube consisting of type 304L stainless steel for corrosion resistance on the outside diameter and having carbon steel (A210 Gr. A1) as the inside component for both water wetted service and the design load. The major application is tubing to handle the corrosive conditions in black liquor recovery boilers. This datasheet provides information on composition, physical properties, microstructure as well as fatigue. It also includes information on forming, heat treating, and joining. Filing Code: SA-482. Producer or source: Sandvik.


Alloy Digest ◽  
2007 ◽  
Vol 56 (4) ◽  

Abstract AK Steel 409 Ultra Form was created for applications needing oxidation or corrosion protection beyond the capability of carbon steel and some coated steels. AK Steel 409 Ultra Form is more formable than standard Type 409 stainless steel and is particularly suitable for parts requiring more complex shapes and improved weldability. Examples of applications include automotive exhaust tubing and stampings. This datasheet provides information on physical properties, hardness, elasticity, and tensile properties as well as deformation. It also includes information on high temperature performance as well as forming and joining. Filing Code: SS-990. Producer or source: AK Steel, Butler Operations.


2020 ◽  
Vol 982 ◽  
pp. 121-127
Author(s):  
Shuo Li ◽  
Qing Dong Zhang

A cylindrical indenter was designed to simulate the roller and 304 stainless steel / Q235A carbon steel plate with different roughness were bonded together. The interfacial bonding behavior was investigated by SEM, ultrasonic “C” scanning detection and nanoindentation test. The result reveal that with the increase of contact pressure between interfaces, the atoms of dissimilar metals begin to diffuse across interfaces in some regions, then form island-like bonding regions, and eventually extend to the whole interface. There are no obvious cracks on the surface of stainless steel and carbon steel after deformation. The cold roll-bonding mechanism of stainless steel and carbon steel is that elements on both sides of the interface diffuse and form a shallow diffusion layer under pressure to ensure the joint strength, and the joint bonding strength is greater than the strength of carbon steel matrix. In addition, the surface morphology of base metal has a great influence on the interfacial bonding quality. The higher surface roughness values increases the hardening degree of rough peak, which makes real contact area difficult to increase and reduce the interfacial bonding quality.


Sign in / Sign up

Export Citation Format

Share Document