Video Encryption Based on Chaotic System and Stream Cipher

2018 ◽  
Vol 1 (2) ◽  
pp. 33-40
Author(s):  
Laith Abdulhussien Hamood ◽  
Mahmood Khalel Ibrahem

the huge development and use of digital multimedia (video, image) over computer networks has led to increase the need for securing of these digital data. Video encryption is widely used as a method for providing security for digital video. In this paper video encryption method is developed using chaotic system for key generator and stream cipher, it uses chaotic map as one-time key generator which produce key used for encryption process. Chaotic systems have been successfully used for multimedia encryption. Chaotic cryptography have good characteristic such as pseudo-randomness, and sensitivity to initial conditions. Video encryption method have successfully designed and implemented, the tests and analysis results have showed the succeed of the encryption method in term of speed and security.

2021 ◽  
Vol 18 (6) ◽  
pp. 9410-9429
Author(s):  
Qing Ye ◽  
◽  
Qiaojia Zhang ◽  
Sijie Liu ◽  
Kaiqiang Chen ◽  
...  

<abstract> <p>Video information is currently widely used in various fields. Compared with image and text data, video data has the characteristics of large data volume, strong data relevance, and large data redundancy, which makes traditional cryptographic systems no longer suitable for video encryption systems. The paper proposes a new chaotic system based on coupled map lattice (CML) and applies it to high efficiency video coding (HEVC) video encryption. The chaotic system logistic-iterative chaotic map with infinite collapses-coupled map lattice (L-ICMIC-CML), which is improved on the basis of the ICMIC system and combined with CML, generates stream ciphers and encrypts some syntax elements of HEVC. The experimental results show that the stream cipher generated by the L-ICMIC-CML system passes the SP800-22 Revla test and has strong randomness. Applying the stream cipher to the proposed HEVC encryption scheme, through the analysis of the encryption scheme's security, encryption time and encryption efficiency, it is better than other chaotic system encryption schemes. The video encryption system proposed in this paper is both safe and efficient.</p> </abstract>


2021 ◽  
pp. 240-248
Author(s):  
Mahmood Khalel Ibrahem ◽  
Hussein Ali Kassim

Recently, with the development multimedia technologies and wireless telecommunication, Voice over Internet Protocol, becomes widely used in communication between connecting people, VoIP allows people that are connected to the local network or the Internet to make voice calls using digital connection instead of based on the analog traditional telephone network. The technologies of Internet doesn’t give any security mechanism and there is no way to guarntee that the voice streams will be transmitted over Internet or network have not been intercepted in between. In this paper, VoIP is developed using stream cipher algorithm and the chaotic cryptography for key generator. It is based on the chaotic maps for generating a one-time random key used to encrypt each voice data in the RTP packet. Chaotic maps have been used successfully for encryption bulky data such as voice, image, and video, chaotic cryptography has good properties such as long periodicity, pseudo-randomness, and sensitivity to initial conditions and change in system parameters. A VoIP system was successfully implemented based on the on ITU-T G.729 for voice codec, as a multimedia encoding of Real-time Transport Protocol payload data, then, apply a proposed method to generate three-mixed logistic chaotic maps [1] and then analysis the encryption/ decryption quality measures for speech signal based this method. The experimental work demonstrates that the proposed scheme can provide confidentiality to voice data with voice over IP performance quality, minimum lost in transmitted packet, minimum average delay, and minimum jitter.


Significant research efforts have been invested in recent years to export new concepts for secure cryptographic methods. Many mathematicians are attracted by Chaos functions as it has sensitive nature toward its initial conditions and their colossal suitability to problems in daily life. Inspired by new researches, a new chaotic cryptography algorithm is proposed in this paper. The key feature of this approach is that instantaneous key is generated at host independently that is used to determine the type of operations on each pixel. The information available in images is 24 bit RGB these value are modified mathematically using eight reversible operations. Also during encryption, the control parameter of the chaotic system is updated timely.


2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Amir Anees ◽  
Iqtadar Hussain ◽  
Abdulmohsen Algarni ◽  
Muhammad Aslam

The protection of copyrights of digital media uploaded to the Internet is a growing problem. In this paper, first, we present a unified framework for embedding and detecting watermark in digital data. Second, a new robust watermarking scheme is proposed considering this concern. The proposed work incorporates three chaotic maps which specify the location for embedding the watermark. Third, a new chaotic map, the Extended Logistic map, is proposed in this work. The proposed map has a bigger range than logistic and cubic maps. It has shown good results in a bifurcation, sensitivity to initial conditions, and randomness tests. Furthermore, with the detailed analysis of initial parameters, it is justified that Extended Logistic map can be used in secure communication, particularly watermarking. Fourth, to check the robustness of proposed watermarking scheme, we have done a series of analyses and standard attacks. The results confirm that the proposed watermarking scheme is robust against visual and statistical analysis and can resist the standard attacks.


2008 ◽  
Vol 22 (07) ◽  
pp. 901-908 ◽  
Author(s):  
XINGYUAN WANG ◽  
CHAOFENG DUAN ◽  
NINI GU

This paper analyzes the encryption and weaknesses of E. Álvarez cryptography. On the basis of this, a new chaotic cryptography based on ergodicity is presented. The control parameter and the initial condition of the chaotic system are chosen as a secret key. A bit chain is generated by iterating the chaotic map, and the location where a plaintext grouping appears in the chain is found. We then write down the number of iterations of the chaotic map as the ciphertext grouping. Several weaknesses of the E. Álvarez cryptography are avoided in the new scheme, and the security of the new scheme is improved. In the end, the new cryptography is studied experimentally using the Logistic map, where the new cryptography's confusion and diffusion is validated, and its effectiveness is also illuminated.


Author(s):  
Temadher Alassiry Al-Maadeed ◽  
Iqtadar Hussain ◽  
Amir Anees ◽  
Muhammad Tahir Mustafa

AbstractWe have proposed a robust, secure and efficient image encryption algorithm based on chaotic maps and algebraic structure. Nowadays, the chaotic cryptosystems gained more attention due to their efficiency, the assurance of robustness and high sensitivity corresponding to initial conditions. In literature, there are many encryption algorithms that can simply guarantees security while the schemes based on chaotic systems only promises the uncertainty, both of them can not encounter the needs of current scenario. To tackle this issue, this article proposed an image encryption algorithm based on Lorenz chaotic system and primitive irreducible polynomial substitution box. First, we have proposed 16 different S-boxes based on projective general linear group and 16 primitive irreducible polynomials of Galois field of order 256, and then utilized these S-boxes with combination of chaotic map in image encryption scheme. Three chaotic sequences can be produced by the disturbed of Lorenz chaotic system corresponding to variables x, y and z. We have constructed a new pseudo random chaotic sequence ki based on x, y and z. The plain image is encrypted by the use of chaotic sequence ki and XOR operation to get a ciphered image. To show the strength of presented image encryption, some renowned analyses are performed.


2008 ◽  
Vol 19 (05) ◽  
pp. 813-820 ◽  
Author(s):  
XING-YUAN WANG ◽  
XIAO-JUAN WANG

Because of the sensitivity of chaotic systems on initial conditions/control parameters, when chaotic systems are realized in a discrete space with finite states, the dynamical properties will be far different from the ones described by the continuous chaos theory, and some degradation will arise. This problem will cause the chaotic trajectory eventually periodic. In order to solve the problem, a new binary stream-cipher algorithm based on one-dimensional piecewise linear chaotic map is proposed in this paper. In the process of encryption and decryption, we employ a secret variant to perturb the chaotic trajectory and the control parameter to lengthen the cycle-length of chaotic trajectory. In addition, we design a nonlinear principle to generate a pseudo-random chaotic bit sequence as key stream. Cryptanalysis shows that the cryptosystem is of high security.


2011 ◽  
Vol 279 ◽  
pp. 456-460
Author(s):  
Jian Hua Song ◽  
Qun Ding

In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. In this paper, the sequence was generated using chaotic system, combined with high efficiency and better security in transform domain. An image encryption method based on Tent chaotic map in DCT domain was proposed. The simulation results show that this method has characteristics such as high efficiency and good safety, and has a certain practicality and objectivity.


Chaotic systems behavior attracts many researchers in the field of image encryption. The major advantage of using chaos as the basis for developing a crypto-system is due to its sensitivity to initial conditions and parameter tunning as well as the random-like behavior which resembles the main ingredients of a good cipher namely the confusion and diffusion properties. In this article, we present a new scheme based on the synchronization of dual chaotic systems namely Lorenz and Chen chaotic systems and prove that those chaotic maps can be completely synchronized with other under suitable conditions and specific parameters that make a new addition to the chaotic based encryption systems. This addition provides a master-slave configuration that is utilized to construct the proposed dual synchronized chaos-based cipher scheme. The common security analyses are performed to validate the effectiveness of the proposed scheme. Based on all experiments and analyses, we can conclude that this scheme is secure, efficient, robust, reliable, and can be directly applied successfully for many practical security applications in insecure network channels such as the Internet


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 535
Author(s):  
Karim H. Moussa ◽  
Ahmed I. El Naggary ◽  
Heba G. Mohamed

Multimedia wireless communications have rapidly developed over the years. Accordingly, an increasing demand for more secured media transmission is required to protect multimedia contents. Image encryption schemes have been proposed over the years, but the most secure and reliable schemes are those based on chaotic maps, due to the intrinsic features in such kinds of multimedia contents regarding the pixels’ high correlation and data handling capabilities. The novel proposed encryption algorithm introduced in this article is based on a 3D hopping chaotic map instead of fixed chaotic logistic maps. The non-linearity behavior of the proposed algorithm, in terms of both position permutation and value transformation, results in a more secured encryption algorithm due to its non-convergence, non-periodicity, and sensitivity to the applied initial conditions. Several statistical and analytical tests such as entropy, correlation, key sensitivity, key space, peak signal-to-noise ratio, noise attacks, number of pixels changing rate (NPCR), unified average change intensity randomness (UACI), and others tests were applied to measure the strength of the proposed encryption scheme. The obtained results prove that the proposed scheme is very robust against different cryptography attacks compared to similar encryption schemes.


Sign in / Sign up

Export Citation Format

Share Document