An Image Encryption Method Based on Tent Chaotic Map in DCT Domain

2011 ◽  
Vol 279 ◽  
pp. 456-460
Author(s):  
Jian Hua Song ◽  
Qun Ding

In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. In this paper, the sequence was generated using chaotic system, combined with high efficiency and better security in transform domain. An image encryption method based on Tent chaotic map in DCT domain was proposed. The simulation results show that this method has characteristics such as high efficiency and good safety, and has a certain practicality and objectivity.

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Hui Ren ◽  
Jun Wang ◽  
Qiong-Hua Wang

We introduce an image encryption method based on computer-generated hologram (CGH) and two-dimensional Sine Logistic modulation map (2D-SLMM). We combine CGH and 2D-SLMM to improve encryption security. During the encryption process, the hologram needs to be logistically modulated by 2D-SLMM. This logistic modulation technique can avoid complex algorithms. Simulation results and security analysis demonstrate that the proposed approach has a high security level, good invisibility of image information in ciphertext, large key space, and strong robustness.


2021 ◽  
Vol 18 (6) ◽  
pp. 9410-9429
Author(s):  
Qing Ye ◽  
◽  
Qiaojia Zhang ◽  
Sijie Liu ◽  
Kaiqiang Chen ◽  
...  

<abstract> <p>Video information is currently widely used in various fields. Compared with image and text data, video data has the characteristics of large data volume, strong data relevance, and large data redundancy, which makes traditional cryptographic systems no longer suitable for video encryption systems. The paper proposes a new chaotic system based on coupled map lattice (CML) and applies it to high efficiency video coding (HEVC) video encryption. The chaotic system logistic-iterative chaotic map with infinite collapses-coupled map lattice (L-ICMIC-CML), which is improved on the basis of the ICMIC system and combined with CML, generates stream ciphers and encrypts some syntax elements of HEVC. The experimental results show that the stream cipher generated by the L-ICMIC-CML system passes the SP800-22 Revla test and has strong randomness. Applying the stream cipher to the proposed HEVC encryption scheme, through the analysis of the encryption scheme's security, encryption time and encryption efficiency, it is better than other chaotic system encryption schemes. The video encryption system proposed in this paper is both safe and efficient.</p> </abstract>


Optik ◽  
2018 ◽  
Vol 171 ◽  
pp. 277-286 ◽  
Author(s):  
Chun-Lai Li ◽  
Hong-Min Li ◽  
Fu-Dong Li ◽  
Du-Qu Wei ◽  
Xuan-Bing Yang ◽  
...  

2019 ◽  
Vol 48 (7) ◽  
pp. 710002 ◽  
Author(s):  
郭媛 GUO Yuan ◽  
许鑫 XU Xin ◽  
敬世伟 JING Shi-wei ◽  
杜松英 DU Song-ying

Photonics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Hsuan T. Chang ◽  
Yao-Ting Wang ◽  
Chien-Yu Chen

We propose an angle multiplexing method for optics-based image encryption using a phase-only computer-generated hologram (POCGH) in the tilted Fresnel transform (TFrT) domain. Modified Gerchberg-Saxton algorithms, based on the three types of rotation manipulation in both the hologram and reconstruction planes, are used with their corresponding TFrT parameters to extract the phase-only functions (POFs) of the target images. All the extracted POFs are then phase-modulated and summed to obtain the final POCGH, which is capable of multiplexing and avoiding overlap in the reconstructed images. The computer simulation results show that the images corresponding to the various rotation manipulations at the hologram and image reconstruction planes can be successfully restored with high correlation coefficients. Due to the encrypted nature of the multiplexed images, a higher system security level can be achieved, as the images can only be correctly displayed when all the required parameters in the TFrT are available. The angle sensitivity on the image quality for each manipulation is also investigated.


Author(s):  
Hamsa A Abdullah ◽  
Hikmat N Abdullah

<p>In this paper, an FPGA implementation of efficient image encryption algorithm using a chaotic map has been proposed. The proposed system consists of two phases image encryption technique. First phase consists of scrambling of pixel position and second phase consist of diffusion of bit value. In the first phase, original pixel values remain unchanged. In second phase, pixel values are modified. These modifications are done by using chaotic behavior of a recently developed chaotic map called Nahrain.  A color image encryption using Nahrain chaotic map is simulated in software via Matlab, Altera Quartus Prime 17.0 Lite EditionI and ModelSim software tools then implemented in hardware via Cyclone V GX Starter Kit FPGA platform. The results show the feasibility and effectiveness of the cryptosystem. As a typical application, the image encryption/decryption is used to demonstrate and verify the operation of the cryptosystem hardware. Complete analysis on robustness of the method is investigated. Correlation, Encryption time, Decryption time and key sensitivity show that the proposed crypto processor offers high security and reliable encryption speed for real-time image encryption and transmission.  To evaluate the performance, histogram, correlation, information entropy, number of pixel change rate (NPCR), and unified average changing intensity (UACI) measures are used for security analysis. The simulation results and security analysis have demonstrated that the proposed encryption system is robust and flexible. For example the amount of entropy obtained by the proposed algorithm is 7.9964, which is very close to its ideal amount: 8, and NPCR is 99.76 %, which is the excellent value to obtain. The hardware simulation results show that the number of pins that used of the proposed system reaches to 6% of total pins and Logic utilization (in ALMs) is 1%.</p>


2019 ◽  
Vol 11 (1) ◽  
pp. 126-137 ◽  
Author(s):  
Min Long ◽  
You Li ◽  
Fei Peng

This article describes how to protect the security of cloud storage, a provable data possession scheme based on full-nodes of an AVL tree for multiple data copies in cloud storage. In the proposed scheme, a Henon chaotic map is first implemented for the node calculation of the AVL tree, and then the location of the data in the cloud is verified by AVL tree. As an AVL tree can keep the balance even with multiple dynamic operations made on the data in the cloud, it can improve the search efficiency of the data block, and reduce the length of the authentication path. Simulation results and analysis confirm that it can achieve good security and high efficiency.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 504 ◽  
Author(s):  
Wei Zhang ◽  
Zhiliang Zhu ◽  
Hai Yu

In this paper, the properties of the classical confusion–substitution structure and some recently proposed pseudorandom number generators using one-dimensional chaotic maps are investigated. To solve the low security problem of the original structure, a new bit-level cellular automata strategy is used to improve the sensitivity to the cryptosystem. We find that the new evolution effects among different generations of cells in cellular automata can significantly improve the diffusion effect. After this, a new one-dimensional chaotic map is proposed, which is constructed by coupling the logistic map and the Bernoulli map (LBM). The new map exhibits a much better random behavior and is more efficient than comparable ones. Due to the favorable properties of the new map and cellular automata algorithm, we propose a new image-encryption algorithm in which three-dimensional bit-level permutation with LBM is employed in the confusion phase. Simulations are carried out, and the results demonstrate the superior security and high efficiency of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document