scholarly journals PRODUCTION OF LACTIC ACID WORT-BASED BEVERAGES WITH MINT ESSENTIAL OIL ADDITION

2021 ◽  
Vol 2021 (2/2021) ◽  
pp. 5-11
Author(s):  
Magdalena Trendafilova ◽  
Bogdan Goranov ◽  
Vesela Shopska ◽  
Rositsa Denkova-Kostova ◽  
Velislava Lyubenova ◽  
...  

Lactic acid wort-based beverages are functional, non-alcoholic, with low pH value and produced by the fermentation of wort by lactic acid bacteria. They are not well accepted by consumers because of their poor sensory characteristics. Therefore, 0.025 and 0.05 % (v/v) mint (Mentha piperita) essential oil was used as a tool for improvement of lactic acid wort-based beverages organoleptic profile. Wort was produced by 60% Pilsen malt, 20% Vienna malt, and 20% Caramel Munich ІІ malt. It was inoculated with probiotic lactic acid bacteria Lactobacillus casei ssp. rhamnosus LBRC11 at a concentration of 107 cells/ml and fermentation was carried out at constant temperature of 25°C. The dynamics of pH, concentration of viable cells, phenolic compounds and antioxidant activity were monitored and the beverages obtained were evaluated by a tasting panel. The results showed that addition of mint essential oil in concentration of 0.025 and 0.05 % (v/v) inhibited lactic acid fermentation but improved the sensory profile of the beverage obtained only when 0.025% mint essential oil was added. Mint essential oil addition led to an increase in the total phenolic compounds concentration, phenolic acids and flavonoid phenolic compounds, measured by Folin–Ciocalteu and modified Glories method but resulted in a decrease in the antioxidant activity, measured by the DPPH radical scavenging assay, cupric reducing antioxidant power (CUPRAC) and ferric reducing antioxidant power (FRAP). The antioxidant activity measured by the ABTS radical scavenging assay was almost equal for the beverages with and without mint essential oil addition. The results obtained will be used for modeling of lactic acids fermentation with addition of mint essential oil for the production of functional wort-based beverages. Keywords: lactic acid fermentation, wort, mint essential oil, phenolic compounds, antioxidant activity

2021 ◽  
pp. 5-11
Author(s):  
Magdalena Trendafilova ◽  
Bogdan Goranov ◽  
Vesela Shopska ◽  
Rositsa Denkova-Kostova ◽  
Velislava Lyubenova ◽  
...  

Lactic acid wort-based beverages are functional, non-alcoholic, with low pH value and produced by the fermentation of wort by lactic acid bacteria. They are not well accepted by consumers because of their poor sensory characteristics. Therefore, 0.025 and 0.05 % (v/v) mint (Mentha piperita) essential oil was used as a tool for improvement of lactic acid wort-based beverages organoleptic profile. Wort was produced by 60% Pilsen malt, 20% Vienna malt, and 20% Caramel Munich ІІ malt. It was inoculated with probiotic lactic acid bacteria Lactobacillus casei ssp. rhamnosus LBRC11 at a concentration of 107 cells/ml and fermentation was carried out at constant temperature of 25°C. The dynamics of pH, concentration of viable cells, phenolic compounds and antioxidant activity were monitored and the beverages obtained were evaluated by a tasting panel. The results showed that addition of mint essential oil in concentration of 0.025 and 0.05 % (v/v) inhibited lactic acid fermentation but improved the sensory profile of the beverage obtained only when 0.025% mint essential oil was added. Mint essential oil addition led to an increase in the total phenolic compounds concentration, phenolic acids and flavonoid phenolic compounds, measured by Folin–Ciocalteu and modified Glories method but resulted in a decrease in the antioxidant activity, measured by the DPPH radical scavenging assay, cupric reducing antioxidant power (CUPRAC) and ferric reducing antioxidant power (FRAP). The antioxidant activity measured by the ABTS radical scavenging assay was almost equal for the beverages with and without mint essential oil addition. The results obtained will be used for modeling of lactic acids fermentation with addition of mint essential oil for the production of functional wort-based beverages.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Leyu Wang ◽  
Hexin Zhang ◽  
Hongjie Lei

The aim of this study was to evaluate the effects of lactic acid fermentation using three Lactobacillus strains (Lactiplantibacillus plantarum 90, Lactobacillus helveticus 76, and Lacticaseibacillus casei 37) in monoculture and binary mixture on phenolics profile, antioxidant activity and flavor volatiles in pear juice. Results showed that the colony counts of binary mixture were higher than monoculture in fermented pear juice. The total content of phenols was increased, while that of flavonoids was decreased significantly during fermentation (p < 0.05). Antioxidant activities in fermented peer juice including DPPH and ABTS radical scavenging abilities and ferric reducing antioxidant power (FRAP) were significantly improved (p < 0.05). Binary mixture of Lactiplantibacillus plantarum 90 and Lacticaseibacillus casei 37 fermentation exhibited strong DPPH radical scavenging ability, due to the increase in vanillic acid and arbutin contents. Furthermore, lactic acid fermentation improved the formation of alcohols, esters, acids and terpenoids, and reduced the contents of aldehydes and ketones. Thirty new compounds including 15 alcohols, seven esters, five acids, and three terpenoids were observed in fermented pear juice. Hierarchical cluster revealed that flavor volatiles in pear juice were improved dramatically by Lactobacillus strains fermentation, and there were dramatic differences between monoculture and binary mixture.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0249250
Author(s):  
Hsing-Chun Kuo ◽  
Ho Ki Kwong ◽  
Hung-Yueh Chen ◽  
Hsien-Yi Hsu ◽  
Shu-Han Yu ◽  
...  

In this study, different probiotics commonly used to produce fermented dairy products were inoculated independently for Chenopodium formosanum Koidz. fermentation. The strain with the highest level of antioxidant activity was selected and the fermentation process was further optimized via response surface methodology (RSM). Lactobacillus plantarum BCRC 11697 was chosen because, compared to other lactic acid bacteria, it exhibits increased free radical scavenging ability and can produce more phenolic compounds, DPPH (from 72.6% to 93.2%), and ABTS (from 64.2% to 76.9%). Using RSM, we further optimize the fermentation protocol of BCRC 11697 by adjusting the initial fermentation pH, agitation speed, and temperature to reach the highest level of antioxidant activity (73.5% of DPPH and 93.8% of ABTS). The optimal protocol (pH 5.55, 104 rpm, and 24.4°C) resulted in a significant increase in the amount of phenolic compounds as well as the DPPH and ABTS free radical scavenging ability of BCRC 11697 products. The IC50 of the DPPH and ABTS free radical scavenging ability were 0.33 and 2.35 mg/mL, respectively, and both protease and tannase activity increased after RSM. An increase in lower molecular weight (<24 kDa) protein hydrolysates was also observed. Results indicated that djulis fermented by L. plantarum can be a powerful source of natural antioxidants for preventing free radical-initiated diseases.


2021 ◽  
Vol 9 (7) ◽  
pp. 1364
Author(s):  
Young-Ran Song ◽  
Chan-Mi Lee ◽  
Seon-Hye Lee ◽  
Sang-Ho Baik

This study aimed to determine the probiotic potential of Pediococcus acidilactici M76 (PA-M76) for lactic acid fermentation of black raspberry extract (BRE). PA-M76 showed outstanding probiotic properties with high tolerance in acidic GIT environments, broad antimicrobial activity, and high adhesion capability in the intestinal tract of Caenorhabditis elegans. PA-M76 treatment resulted in significant increases of pro-inflammatory cytokine mRNA expression in macrophages, indicating that PA-M76 elicits an effective immune response. When PA-M76 was used for lactic acid fermentation of BRE, an EPS yield of 1.62 g/L was obtained under optimal conditions. Lactic acid fermentation of BRE by PA-M76 did not significantly affect the total anthocyanin and flavonoid content, except for a significant increase in total polyphenol content compared to non-fermented BRE (NfBRE). However, fBRE exhibited increased DPPH radical scavenging activity, linoleic acid peroxidation inhibition rate, and ABTS scavenging activity of fBRE compared to NfBRE. Among the 28 compounds identified in the GC-MS analysis, esters were present as the major groups. The total concentration of volatile compounds was higher in fBRE than that in NfBRE. However, the undesirable flavor of terpenes decreased. PA-M76 might be useful for preparing functionally enhanced fermented beverages with a higher antioxidant activity of EPS and enhanced flavors.


Botanica ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 76-87
Author(s):  
Aziza Lfitat ◽  
Hind Zejli ◽  
Abdelkamel Bousselham ◽  
Yassine El Atki ◽  
Badiaa Lyoussi ◽  
...  

AbstractWe conducted this study to determine and compare the content of phenolic compounds and flavonoids in the argan and olive leaves as well as their antioxidant capacity in aqueous, methanolic, and ethyl acetate extracted fractions. In vitro antioxidant activity was evaluated in comparison with synthetic antioxidants by assessing DPPH• radical scavenging capacity, ferric reducing antioxidant power, scavenging ability by inhibiting the β-carotene/linoleic acid emulsion oxidation, and by the ABTS radical scavenging activity assay. Total phenolic content in argan samples ranged from 221.69 ± 2.07 to 1.32 ± 0.01 mg GAE/g DW and in olive samples from 144.61 ± 0.82 to 1.21 ± 0.02 mg GAE/g DW. Total flavonoids content in argan samples varied from 267.37 ± 1.12 to 25.48 ± 0.02 mg QE/g DW, while in olives from 96.06 ± 0.78 to 10.63 ± 0.05 mg QE/g DW. In vitro antioxidant studies strongly confirmed the antioxidant potency of argan and olive leaves and their richness in secondary metabolites that are effective in free radicals scavenging and metal chelating capacities, indicating their antioxidant power.


2019 ◽  
Vol 15 (3) ◽  
pp. 394-397
Author(s):  
Najwa Ahmad Kuthi ◽  
Norazah Basar

Pellacalyx axillaris or locally known as ‘membuloh’ is a mangrove species belonging to the Rhizophoraceae family. Till date, there has been only one phytochemical study found on this particular plant species and that without any documentation on its biological activities. Therefore, the present work aimed to reveal the phytoconstituents and the antioxidant activity of different crude extracts from different plant parts of P. axillaris. Experimentally, three organic solvents of different polarities i.e. n-hexane, ethyl acetate and methanol were used to prepare the crude extracts from the dried leaves, twigs and barks of P. axillaris. The preliminary phytochemical screening of this species indicated the presence of terpenoids, phenolic compounds, tannins, flavonoids, alkaloids, anthraquinone glycosides and carbohydrates. The in vitro antioxidant activity of the species evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, and ferric reducing antioxidant power (FRAP) suggested that the methanolic bark extract contained potential source of natural antioxidants. Further research into isolation of antioxidant compounds from this species is highly recommended.


Fermentation ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 37 ◽  
Author(s):  
Hong-Ting Victor Lin ◽  
Mei-Ying Huang ◽  
Te-Yu Kao ◽  
Wen-Jung Lu ◽  
Hsuan-Ju Lin ◽  
...  

Biodegradable polylactic acid material is manufactured from lactic acid, mainly produced by microbial fermentation. The high production cost of lactic acid still remains the major limitation for its application, indicating that the cost of carbon sources for the production of lactic acid has to be minimized. In addition, a lack of source availability of food crop and lignocellulosic biomass has encouraged researchers and industries to explore new feedstocks for microbial lactic acid fermentation. Seaweeds have attracted considerable attention as a carbon source for microbial fermentation owing to their non-terrestrial origin, fast growth, and photoautotrophic nature. The proximate compositions study of red, brown, and green seaweeds indicated that Gracilaria sp. has the highest carbohydrate content. The conditions were optimized for the saccharification of the seaweeds, and the results indicated that Gracilaria sp. yielded the highest reducing sugar content. Optimal lactic acid fermentation parameters, such as cell inoculum, agitation, and temperature, were determined to be 6% (v/v), 0 rpm, and 30 °C, respectively. Gracilaria sp. hydrolysates fermented by lactic acid bacteria at optimal conditions yielded a final lactic acid concentration of 19.32 g/L.


Sign in / Sign up

Export Citation Format

Share Document