Problems of Strength and Plasticity

2021 ◽  
Vol 83 (4) ◽  
2014 ◽  
Vol 976 ◽  
pp. 202-206 ◽  
Author(s):  
Javier Flores Badillo ◽  
Juan Hernández Ávila ◽  
Francisco Patiño Cardona ◽  
Norma Yacelit Trápala Pineda ◽  
José Abacú Ostos Santos

In this paper we present the production of alternative industrial materials from the mining waste in the form of tailings, this study was made with the tailings of Dos Carlos, establishing 4 sampling zones, dividing them into three strata in the bottom, middle and top. The sampling method used is quartering, to homogenize the material and anticipate the possible use of it as a building material, having for this purpose 12 ceramic mixtures for subsequent treatment. Chemical composition was determined as 70.43% SiO2, 7.032% Al2O3, 2.69% Fe2O3, 0.46% MnO2, 3.98% K2O, 3.34% CaO, 2.50% Na2O, 56 grams per tonne of Ag y 0.6 grams per tonne of Au. In the mineralogical characterization the tailings presents silica, albite, berlinite, orthoclase and potassium jarosite as the main mineral phases, among other mineral phases in lesser concentration such as gypsum, calcite, anorthoclase, pyrite, sphalerite and galena. The determinations of the tailing material granulometry in the range of 60% in a size less than 270 mesh (53 μm). Afterwards, the alternative industrial materials were produced by using the tailings and heavy clay in order to give the composite a good green strength and plasticity during development, but above all to give it a compressive strength similar or higher than that of products derived from conventional processes. Keywords: Tailings, green strength, compressive strength, plasticity, heavy clays, alternative industrial materials.


1970 ◽  
Vol 2 (10) ◽  
pp. 1082-1084
Author(s):  
V. S. Mikheev ◽  
P. F. Koshelev ◽  
P. N. Nikitin ◽  
G. D. Shnyrev

2011 ◽  
Vol 291-294 ◽  
pp. 1082-1086
Author(s):  
Yao Jin Wu ◽  
Zhi Ming Zhang ◽  
Bao Cheng Li ◽  
Bao Hong Zhang ◽  
Jian Min Yu ◽  
...  

In the present research, the influences of different extrusion ratios (15, 30, 45, 60, and 75) and extrusion temperature (300°C, 330°C, 360°C, 390°C, 420°C) on the mechanical properties and microstructure changes of AZ80 magnesium alloy have been investigated through tensile test and via ZEISS digital metallographic microscope observation. Research indicates that the alloy’s plasticity gradually decreases as the temperature increases, and that the alloy’s tensile strength varies with the extrusion ratio. At 330°C, the alloy’s particle grain is small and a small amount of black hard and brittle second-phase β (Mg17Al12) are precipitated uniformly along the grain boundary causing the gradual increase of the alloy’s tensile strength. When the extrusion temperature is up to 390°C, the grain size increases significantly, but the second phase precipitation along grain boundaries transforms into continuous and uniform-distribution precipitation within the grain. In this case, when the extrusion ratio is 60, the alloy’s tensile strength reaches its peak 390 Mpa. As the extrusion temperature increases, inhomogeneous precipitation of the second-phase along grain boundaries increases, causing the decrease of the alloy’s strength. At the same temperature, both the tensile strength and plasticity increases firstly and then decreases as extrusion ratio increases. With the gradual increase of the refinement grain, the dispersed precipitates increase and the alloy’s tensile strength and plasticity reach their peaks when the extrusion temperature is 390°C. As the grain grows, the second phase becomes inhomogeneous distribution, and the alloy’s strength and plasticity gradually decrease.


2018 ◽  
Vol 165 ◽  
pp. 05002
Author(s):  
Alexander Balitskii ◽  
Jacek Eliasz ◽  
Valentina Balitska

It has been established that, at some region of hydrogen pressure and strain rate exists a maximum influence of hydrogen on the plasticity, low cycle fatigue and cyclic crack resistance of Ni-Co alloys and high nitrogen steels. The drop of plasticity of the dispersion-hardening materials within the temperature range of intense phase transformations is caused by the localization of strains on the grain boundaries due to the intense redistribution of alloying elements in the boundary regions. Moreover, the increase in plasticity observed at higher temperatures is caused both by partial coagulation of hardening phases and possible dissolution of small amounts of finely divided precipitations. The effect hydrogen on short-term strength and plasticity, high- and low-cycle durability of 15Cr12Ni2MoNMoWNb martensitic steel, 10Cr15Ni27Ti3W2BMo austenitic dispersion-hardened steel, heat resistant 3,5NiCrMoV rotor steel, 04Kh16Ni56Nb5Mo5TiAl and 05Kh19Ni55Nb2Mo9Al Ni-base superalloys in range of pressures 0–30 MPa and temperatures 293–1073 K was investigated. In the case of 15Cr12Ni2MoNMoWNb steel and 04Kh16Ni56Nb5Mo5TiAl alloy the dependence of low-cycle durability (N) and characteristics of plasticity (δ and φ) on the hydrogen pressure consists of two regions. In the first region (low pressures), the N, δ and φ abruptly drops, and in the second, the negative action of hydrogen becomes stable or decrease negligibility.


2018 ◽  
Vol 157 ◽  
pp. 52-59 ◽  
Author(s):  
C.L. Yang ◽  
Z.J. Zhang ◽  
S.J. Li ◽  
Y.J. Liu ◽  
T.B. Sercombe ◽  
...  

2015 ◽  
Vol 26 (10) ◽  
pp. 1887-1900 ◽  
Author(s):  
Steven D. Garafalo ◽  
Eric S. Luth ◽  
Benjamin J. Moss ◽  
Michael I. Monteiro ◽  
Emily Malkin ◽  
...  

Regulation of glutamate receptor (GluR) abundance at synapses by clathrin-mediated endocytosis can control synaptic strength and plasticity. We take advantage of viable, null mutations in subunits of the clathrin adaptor protein 2 (AP2) complex in Caenorhabditis elegans to characterize the in vivo role of AP2 in GluR trafficking. In contrast to our predictions for an endocytic adaptor, we found that levels of the GluR GLR-1 are decreased at synapses in the ventral nerve cord (VNC) of animals with mutations in the AP2 subunits APM-2/μ2, APA-2/α, or APS-2/σ2. Rescue experiments indicate that APM-2/μ2 functions in glr-1–expressing interneurons and the mature nervous system to promote GLR-1 levels in the VNC. Genetic analyses suggest that APM-2/μ2 acts upstream of GLR-1 endocytosis in the VNC. Consistent with this, GLR-1 accumulates in cell bodies of apm-2 mutants. However, GLR-1 does not appear to accumulate at the plasma membrane of the cell body as expected, but instead accumulates in intracellular compartments including Syntaxin-13– and RAB-14–labeled endosomes. This study reveals a novel role for the AP2 clathrin adaptor in promoting the abundance of GluRs at synapses in vivo, and implicates AP2 in the regulation of GluR trafficking at an early step in the secretory pathway.


2010 ◽  
Vol 139-141 ◽  
pp. 180-184
Author(s):  
Yong Xue ◽  
Zhi Min Zhang ◽  
Li Hui Lang

In the present research, the influences of different extrusion ratios (15, 30, 45, 60, and 75) and extrusion temperatures (300°C, 330°C, 360°C, 390°C, 420°C) on the mechanical properties and microstructure of homogenized AZ80 alloy have been investigated through the tensile tests and via metallographic microscope observation. The results show that the alloy’s grain is small and small amounts of black hard and brittle second-phase β (Mg17Al12) are precipitated uniformly along the grain boundary causing the gradual increase of the alloy’s tensile strength at 330°C. When the extrusion temperature is up to 390°C, the grain size increases significantly, but the second phase precipitation along grain boundaries transforms into continuous and uniform-distribution precipitation within the grain. In this case, when the extrusion ratio is 60, the alloy’s tensile strength reaches its peak 390Mpa. As the extrusion temperature increases, inhomogeneous precipitation of the second-phase along grain boundaries increases, causing the decrease of the alloy’s strength. At the same temperature, the tensile strength increases firstly and then decreases as extrusion ratio increases. With the gradual increase of the refinement grain, the dispersed precipitates increase and the alloy’s tensile strength and plasticity reach their peaks when the extrusion temperature is 390°C. As the grain grows, the second phase becomes inhomogeneous distribution, and the alloy’s strength and plasticity gradually decrease.


Sign in / Sign up

Export Citation Format

Share Document