Indoor air quality prediction systems for smart environments: A systematic review

2020 ◽  
Vol 12 (5) ◽  
pp. 433-453
Author(s):  
Jagriti Saini ◽  
Maitreyee Dutta ◽  
Gonçalo Marques

Air quality is a critical matter of concern in terms of the impact on public health and well-being. Although the consequences of poor air quality are more severe in developing countries, they also have a critical impact in developed countries. Healthcare costs due to air pollution reach $150 billion in the USA, whereas particulate matter causes 412,000 premature deaths in Europe, every year. According to the Environmental Protection Agency (EPA), indoor air pollutant levels can be up to 100 times higher in comparison to outdoor air quality. Indoor air quality (IAQ) is in the top five environmental risks to global health and well-being. The research community explored the scope of artificial intelligence (AI) in the past years to deal with this problem. The IAQ prediction systems contribute to smart environments where advanced sensing technologies can create healthy living conditions for building occupants. This paper reviews the applications and potential of AI for the prediction of IAQ to enhance building environment and public health. The results show that most of the studies analyzed incorporate neural networks-based models and the preferred evaluation metrics are RMSE, R 2 score and error rate. Furthermore, 66.6% of the studies include CO2 sensors for IAQ assessment. Temperature and humidity parameters are also included in 90.47% and 85.71% of the proposed methods, respectively. This study also presents some limitations of the current research activities associated with the evaluation of the impact of different pollutants based on different geographical conditions and living environments. Moreover, the use of reliable and calibrated sensor networks for real-time data collection is also a significant challenge.

2019 ◽  
Vol 266 ◽  
pp. 02013
Author(s):  
E.M.A Zawawi ◽  
A.Z Azaiz ◽  
S.N Kamaruzzaman ◽  
N.M. Ishak ◽  
F.N.M Yussof

This study discusses the Indoor Air Quality (IAQ) in two refurbished private schools in Shah Alam, Selangor. The level of IAQ may affect the comfort, health and well-being of the occupants of the building. Lack of monitoring IAQ in a school may affect the academic performance of the children. The objectives of the research are to observe the ventilation system used in the selected school and the comfort of the occupants; to measure the IAQ; and finally to provide an improvement plan for better air quality. The result shows that the IAQ level of both schools was average, so both were classified as safe for occupation. It is anticipated that this study will benefit the school owners in making sure that their school buildings are conducive to teaching and learning.


10.2196/28920 ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. e28920
Author(s):  
Hari Bhimaraju ◽  
Nitish Nag ◽  
Vaibhav Pandey ◽  
Ramesh Jain

Background Modern environmental health research extensively focuses on outdoor air pollutants and their effects on public health. However, research on monitoring and enhancing individual indoor air quality is lacking. The field of exposomics encompasses the totality of human environmental exposures and its effects on health. A subset of this exposome deals with atmospheric exposure, termed the “atmosome.” The atmosome plays a pivotal role in health and has significant effects on DNA, metabolism, skin integrity, and lung health. Objective The aim of this work is to develop a low-cost, comprehensive measurement system for collecting and analyzing atmosomic factors. The research explores the significance of the atmosome in personalized and preventive care for public health. Methods An internet of things microcontroller-based system is introduced and demonstrated. The system collects real-time indoor air quality data and posts it to the cloud for immediate access. Results The experimental results yield air quality measurements with an accuracy of 90% when compared with precalibrated commercial devices and demonstrate a direct correlation between lifestyle and air quality. Conclusions Quantifying the individual atmosome is a monumental step in advancing personalized health, medical research, and epidemiological research. The 2 main goals in this work are to present the atmosome as a measurable concept and to demonstrate how to implement it using low-cost electronics. By enabling atmosome measurements at a communal scale, this work also opens up potential new directions for public health research. Researchers will now have the data to model the impact of indoor air pollutants on the health of individuals, communities, and specific demographics, leading to novel approaches for predicting and preventing diseases.


2021 ◽  
Author(s):  
Hari Bhimaraju ◽  
Nitish Nag ◽  
Vaibhav Pandey ◽  
Ramesh Jain

BACKGROUND Modern environmental health research extensively focuses on outdoor air pollutants and their effects on public health. However, research on monitoring and enhancing individual indoor air quality is lacking. The field of exposomics encompasses the totality of human environmental exposures and its effects on health. A subset of this exposome deals with atmospheric exposure, termed the “atmosome.” The atmosome plays a pivotal role in health and has significant effects on DNA, metabolism, skin integrity, and lung health. OBJECTIVE The aim of this work is to develop a low-cost, comprehensive measurement system for collecting and analyzing atmosomic factors. The research explores the significance of the atmosome in personalized and preventive care for public health. METHODS An internet of things microcontroller-based system is introduced and demonstrated. The system collects real-time indoor air quality data and posts it to the cloud for immediate access. RESULTS The experimental results yield air quality measurements with an accuracy of 90% when compared with precalibrated commercial devices and demonstrate a direct correlation between lifestyle and air quality. CONCLUSIONS Quantifying the individual atmosome is a monumental step in advancing personalized health, medical research, and epidemiological research. The 2 main goals in this work are to present the atmosome as a measurable concept and to demonstrate how to implement it using low-cost electronics. By enabling atmosome measurements at a communal scale, this work also opens up potential new directions for public health research. Researchers will now have the data to model the impact of indoor air pollutants on the health of individuals, communities, and specific demographics, leading to novel approaches for predicting and preventing diseases.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 118
Author(s):  
Ruey-Lung Hwang ◽  
Wei-An Chen ◽  
Yu-Teng Weng

This study estimates the relationship between poor indoor environmental quality (IEQ) and the increasing labor costs in green buildings in Taiwan. Specifically, poor performance of IEQ including HVAC, lighting, and indoor air quality, influences the health and well-being of occupants and leads to worse productivity, ultimately causing increased personnel cost. In Taiwan’s green building certification (GBC) system, the energy-savings category is mandatory while the IEQ category is only optional. It means that certified building cases may not reach the expected level in IEQ. Thus, this study reviews the thermal environment, indoor air quality (IAQ), and illumination performances of IEQ-certified and non-IEQ-certified buildings in 20 green buildings. Building energy and IEQ simulations were conducted to analyze the relationships between indoor comfort, energy cost, and personnel cost in green buildings. The results show that IEQ-certified green buildings averagely perform better than non-IEQ-certified ones in the aspects of IEQ and building costs. Besides, 3 of 13 non-IEQ-certified green buildings undertake extremely high additional expenditure for the poor IEQ. The results correspond to some previous findings that green-certified buildings do not necessarily guarantee good building performance. This study further inspects the pros and cons of Taiwan’s GBC system and proposes recommendations against its insufficient IEQ evaluation category. As the trade-off of energy-saving benefits with health and well-being in green buildings has always been a concern, this study aims to stimulate more quantitative research and promote a more comprehensive green building certification system in Taiwan.


Author(s):  
Alejandro Moreno-Rangel ◽  
Tim Sharpe ◽  
Gráinne McGill ◽  
Filbert Musau

Indoor air quality (IAQ) is a critical consideration in airtight buildings that depend on mechanical ventilation, such as those constructed to the Passivhaus standard. While previous reviews of IAQ on Passivhaus-certified buildings foccused on offices, this study examines residential buildings. A summary of data collection methods and pollutant concentrations is presented, followed by a critical discussion of the impact of Passivhaus design strategies on IAQ. This review indicates that IAQ in Passivhaus-certified dwellings is generally better than in conventional homes, but both occupant behaviour and pollution from outdoor sources play a significant role in indoor concentrations. Moreover, there are differences in data collection and reporting methods. Many of the available studies depend on short-term IAQ monitoring of less than two weeks, making it difficult to determine the longer impact of housing design on IAQ and occupants’ well-being. There is also a lack of studies from non-European countries. Future research should focus on investigating associations between IAQ and Passivhaus design strategies in hot and humid climates, where evidence is particularly lacking. Further effort is also required to investigate potential links between occupant’s perception of IAQ and physical exposure to indoor pollution. Finally, the lack of homogeneous monitoring and reporting methods for IAQ studies needs to be addressed.


2020 ◽  
Vol 12 (10) ◽  
pp. 4024 ◽  
Author(s):  
Gonçalo Marques ◽  
Jagriti Saini ◽  
Maitreyee Dutta ◽  
Pradeep Kumar Singh ◽  
Wei-Chiang Hong

Smart cities follow different strategies to face public health challenges associated with socio-economic objectives. Buildings play a crucial role in smart cities and are closely related to people’s health. Moreover, they are equally essential to meet sustainable objectives. People spend most of their time indoors. Therefore, indoor air quality has a critical impact on health and well-being. With the increasing population of elders, ambient-assisted living systems are required to promote occupational health and well-being. Furthermore, living environments must incorporate monitoring systems to detect unfavorable indoor quality scenarios in useful time. This paper reviews the current state of the art on indoor air quality monitoring systems based on Internet of Things and wireless sensor networks in the last five years (2014–2019). This document focuses on the architecture, microcontrollers, connectivity, and sensors used by these systems. The main contribution is to synthesize the existing body of knowledge and identify common threads and gaps that open up new significant and challenging future research directions. The results show that 57% of the indoor air quality monitoring systems are based on Arduino, 53% of the systems use Internet of Things, and WSN architectures represent 33%. The CO2 and PM monitoring sensors are the most monitored parameters in the analyzed literature, corresponding to 67% and 29%, respectively.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 341
Author(s):  
Ralf-Uwe Syrbe ◽  
Ina Neumann ◽  
Karsten Grunewald ◽  
Patrycia Brzoska ◽  
Jiři Louda ◽  
...  

The quality of life in our cities critically depends on the intelligent planning and shaping of urban living space, in particular urban nature. By providing a wide range of ecosystem services (ES), urban nature essentially contributes to the well-being of city dwellers and plays a major role in avoiding common diseases through its positive impact on physical and mental health. Health is one of the most important factors underlying human welfare and is, thus, vital to sustainable development. The ES of urban green space provide other social-cultural functions alongside public health, for example by fostering environmental justice and citizenship participation. Thus, they should always be considered when searching for solutions to urban problems. The aim of this research was to determine the impact of green areas in three selected cities on the health and well-being of people by self-reporting of green areas’ visitors. To this end, we posed the research question: which types and characteristics of urban green space are most appreciated by city dwellers? Based on our findings, we have drawn up recommendations for practices to promote better living conditions. We have also pinpointed obstacles to and opportunities for leisure time activities as well as ways of supporting the public health of citizens.


2021 ◽  
Vol 13 (8) ◽  
pp. 4139
Author(s):  
Muriel Diaz ◽  
Mario Cools ◽  
Maureen Trebilcock ◽  
Beatriz Piderit-Moreno ◽  
Shady Attia

Between the ages of 6 and 18, children spend between 30 and 42 h a week at school, mostly indoors, where indoor environmental quality is usually deficient and does not favor learning. The difficulty of delivering indoor air quality (IAQ) in learning facilities is related to high occupancy rates and low interaction levels with windows. In non-industrialized countries, as in the cases presented, most classrooms have no mechanical ventilation, due to energy poverty and lack of normative requirements. This fact heavily impacts the indoor air quality and students’ learning outcomes. The aim of the paper is to identify the factors that determine acceptable CO2 concentrations. Therefore, it studies air quality in free-running and naturally ventilated primary schools in Chile, aiming to identify the impact of contextual, occupant, and building design factors, using CO2 concentration as a proxy for IAQ. The monitoring of CO2, temperature, and humidity revealed that indoor air CO2 concentration is above 1400 ppm most of the time, with peaks of 5000 ppm during the day, especially in winter. The statistical analysis indicates that CO2 is dependent on climate, seasonality, and indoor temperature, while it is independent of outside temperature in heated classrooms. The odds of having acceptable concentrations of CO2 are bigger when indoor temperatures are high, and there is a need to ventilate for cooling.


Sign in / Sign up

Export Citation Format

Share Document