scholarly journals The Vlasov–Poisson system with strong external magnetic field. Finite Larmor radius regime

2009 ◽  
Vol 61 (2) ◽  
pp. 91-123 ◽  
Author(s):  
Mihai Bostan
2007 ◽  
Vol 25 (1) ◽  
pp. 271-282 ◽  
Author(s):  
R. Smets ◽  
G. Belmont ◽  
D. Delcourt ◽  
L. Rezeau

Abstract. Using hybrid simulations, we examine how particles can diffuse across the Earth's magnetopause because of finite Larmor radius effects. We focus on tangential discontinuities and consider a reversal of the magnetic field that closely models the magnetopause under southward interplanetary magnetic field. When the Larmor radius is on the order of the field reversal thickness, we show that particles can cross the discontinuity. We also show that with a realistic initial shear flow, a Kelvin-Helmholtz instability develops that increases the efficiency of the crossing process. We investigate the distribution functions of the transmitted ions and demonstrate that they are structured according to a D-shape. It accordingly appears that magnetic reconnection at the magnetopause is not the only process that leads to such specific distribution functions. A simple analytical model that describes the built-up of these functions is proposed.


1974 ◽  
Vol 29 (3) ◽  
pp. 518-523 ◽  
Author(s):  
K. M. Srivastava

We have investigated the effect of finite Larmor radius on the Rayleigh-Taylor instability of a semi-infinite, compressible, stratified and infinitely conducting plasma. The plasma is assumed to have a one dimensional density and magnetic field gradients. The eigenvalue problem has been solved under Boussinesq approximation for disturbances parallel to the magnetic field. It has been established that for perturbation parallel to the magnetic field, the system is stable for both stable and unstable stratification. For perturbation perpendicular to the magnetic field, the problem has been solved without Boussinesq approximation. The dispersion relation has been discussed in the two limiting cases, the short and long wave disturbances. It has been observed that the gyroviscosity has a destabilizing influence from k = 0 to k = 4.5 for ß* = 0.1 and for ß* = 0.1 up to k* = 2.85 and then onwards it acts as a stabilizing agent. It has a damping effect on the short wave disturbances. For some parameters, the largets imaginary part has been shown in Figs. 1 and 2


1998 ◽  
Vol 53 (12) ◽  
pp. 937-944 ◽  
Author(s):  
P. K. Sharma ◽  
R. K. Chhajlani

Abstract The Rayleigh-Taylor (R-T) instability of two superposed plasmas, consisting of interacting ions and neutrals, in a horizontal magnetic field is investigated. The usual magnetohydrodynamic equations, including the permeability of the medium, are modified for finite Larmor radius (FLR) corrections. From the relevant linearized perturbation equations, using normal mode analysis, the dispersion relation for the two superposed fluids of different densities is derived. This relation shows that the growth rate unstability is reduced due to FLR corrections, rotation and the presence of neutrals. The horizontal magnetic field plays no role in the R-T instability. The R-T instability is discussed for various simplified configurations. It remains unaffected by the permeability of the porous medium, presence of neutral particles and rotation. The effect of different factors on the growth rate of R-T instability is investigated using numerical analysis. Corresponding graphs are plotted for showing the effect of these factors on the growth of the R-T instability.


2016 ◽  
Vol 82 (4) ◽  
Author(s):  
Antoine Bret

For a Weibel shock to form, two plasma shells have to collide and trigger the Weibel instability. At saturation, this instability generates magnetic filaments in the overlapping region with peak field $B_{f}$. In the absence of an external guiding magnetic field, these filaments can block the incoming flow, initiating the shock formation, if their size is larger than the Larmor radius of the incoming particles in the peak field. Here we show that this result still holds in the presence of an external magnetic field $B_{0}$, provided it is not too high. Yet, for $B_{0}\gtrsim B_{f}/2$, the filaments become unable to stop any particle, regardless of its initial velocity.


1969 ◽  
Vol 3 (4) ◽  
pp. 673-689 ◽  
Author(s):  
James B. Fedele

Small amplitude waves and collisionless shock waves are investigated within the framework of the first-order Chew—Goldberger—Low equations. For linearized oscillations, two modes are present for propagation along an applied magnetic field. One is an acoustic type which contains no finite Larmor radius effects. The other which contains the ‘fire hose’ instability in its lowest order terms, does possess finite Larmor radius corrections. These corrections, however, do not produce instabilities or dissipation. There are no finite Larmor radius corrections to the single mode present for propagation normal to the applied magnetic field. Normal shock structure is investigated, but it is shown that jump solutions do not exist. An analytic solitary pulse solution is found and is compared with the Adlam—Allen pulse solution.


1971 ◽  
Vol 6 (1) ◽  
pp. 73-85
Author(s):  
A. D. Lunn

A closed set of guiding centre equations, derived for a rotating plasma in a static magnetic field, is applied to the problem of the stability of a plasma in a sheared field. The rotation is found to have a stabilizing effect in the absence of resistivity.A pair of coupled, linear differential equations is derived for the rotating plasma in a weakly sheared field. Dispersion relations are obtained by phase integral methods and, in the absence of finite Larmor radius effects and rotation, instability growth rates proportional to η½13 are found which become proportional to when either is included. The inclusion of both finite Larmor radius and rotation gives growing instabilities proportional to η which are stabilized by the rotation when the finite Larmor radius terms predominate.


1975 ◽  
Vol 30 (4) ◽  
pp. 461-465
Author(s):  
R. C. Sharma ◽  
Kirti Prakash

Abstract The effects of the finite Larmor radius of the ions on the thermal instability of a plasma are investigated. When the instability sets in as stationary convection, the finite Larmor radius is found to have a stabilizing effect. The conditions for the nonexistence of overstability are investigated. The case with horizontal magnetic field is discussed.


1969 ◽  
Vol 47 (22) ◽  
pp. 2435-2437 ◽  
Author(s):  
P. D. Ariel ◽  
P. K. Bhatia

The effects of a finite Larmor radius of the ions are investigated on the Rayleigh–Taylor instability of a plasma in which there is a density gradient in a direction perpendicular to that of the magnetic field. It is found that the unstable configuration is completely stabilized by the finite Larmor radius effect.


Sign in / Sign up

Export Citation Format

Share Document