scholarly journals Instability Mode and Movement Characteristics of Dangerous Rock Body in Steep Rock Slope

2021 ◽  
Author(s):  
Junguang Huang ◽  
Shuai Zhang ◽  
Lei Li ◽  
Weike Li

The cutting relationship and development degree of structural plane control the instability mode and scale of rock slope. The trajectory of rock mass after instability is an important basis for the design of dangerous rock prevention. The back slope of a residential area was investigated in this paper. Based on the survey data of the field structure surfaces, the possible instability mode of the slope rock mass was analyzed by using the stereographic projection method. The shear strength parameters of the rock mass were inverted through the investigation of dangerous rock mass. Finally, ANSYS/LS-DYNA was used to simulate the dangerous rock mass motion trajectory. This study provides a reference for the analysis of the instability process of single rock.

2019 ◽  
Vol 15 (12) ◽  
pp. 155014771989595 ◽  
Author(s):  
Ya-Qiong Wang ◽  
Shao-Bing Zhang ◽  
Long-Long Chen ◽  
Yong-Li Xie ◽  
Zhi-Feng Wang

In order to study the deformation stability of rock slope during the excavation of cutting slope and ensure the safety of rock slope during construction and operation period, this article analyzed the deformation law of a typical slope excavation by monitoring the surface deformation and the internal displacement of the rock mass. The surface deformation of the slope is monitored by setting monitoring points, and the internal deformation of the slope is monitored by installing multipoint displacement meters and inclinometers. Therefore, the relationship between slope excavation and deformation is obtained. The analysis of monitoring results shows that the slope is stable before excavation, and the displacement of the slope is gradually increased with the slope excavation. After the excavation, the displacement of each slope tends to converge. The maximum displacement in surface monitoring points is 12.30 mm, and the displacement parallels to the direction of the expressway. The maximum vertical displacement in surface monitoring points is 10.60 mm which occurred in the third step; the maximum internal displacement is 11.02 mm which mainly occurs in the weak structural plane of the rock boundary. During the excavation of the weak rock slope, the slope rock mass is prone to large displacement deformation. After the excavation, the slope surface displacement and internal displacement tend to converge in a short time.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Qingbo Li ◽  
Hongfei Wang ◽  
Mowen Xie ◽  
Weinan Liu

In this study, through an analysis of vibration response characteristics of joint surface stiffness on dangerous rock mass, the relationship formula between amplitude ratio of the dangerous rock mass to the bedrock and the length of the bonding section of the joint surface is determined. The stability of the rock mass can be evaluated by combining the formula with the existing rock-mass limit equilibrium theory. This study proposes the existence of a resonance bonding length for the dangerous rock mass. When the length of the bonding section reaches the resonance bonding length, the dangerous rock mass has the largest response to the bedrock vibration. The study found that when the length of the bonding section of the dangerous rock mass is longer than the resonance bonding length, the amplitude ratio increases with the decrease of the bonding section and increases with the increase of the vibration frequency of the bedrock. When the length of the bonding section of the dangerous rock body is shorter than the resonance bonding length, the amplitude ratio decreases with the decrease of the bonding section and decreases with the increase of the vibration frequency of the bedrock. Indoor experiments were conducted by collecting the vibration time-history curves of rock blocks and stone piers and performing analysis and calculation, which proved the accuracy of the analytical results. Through the amplitude ratio of the dangerous rock mass and the bedrock, the bonding length can be calculated. This method can improve the calculation accuracy of the stability coefficient K of the dangerous rock mass.


2012 ◽  
Vol 594-597 ◽  
pp. 347-351
Author(s):  
Zhou Qiang

The grey Verhulst nonlinear differential dynamic prediction model is applied to the prediction of the development of rock slope deformation in this paper. And experimental results show that grey Verhulst model is feasible to predict the slope rock mass deformation.


2014 ◽  
Vol 919-921 ◽  
pp. 701-705
Author(s):  
Xing Xia Wang ◽  
Chen Jing Deng

Excavation unloading zone corresponds to stress decreased area of slope rock mass after excavation. Quality of slope rock mass in this area will be degraded due to excavation disturbance, and the mechanical parameters of rock mass will be also degraded accordingly. Therefore, determining the range of excavation unloading zone accurately is one of the key factors to ensure the rationality and validity of numerical simulation results of rock slope excavation. In this paper, the range of excavation unloading zone is determined by comparing stress field before and after excavation, choosing stress component perpendicular to excavation face as comparative standard in calculation, which can be calculated by computer program with FLAC software. Stress adjustment of slope rock mass due to excavation is a dynamic and changing progress, so the range of excavation unloading zone is changing during excavation, which can be achieved by a cycling program in numerical simulation. The correctness and usefulness of this method is proved by the calculation results of example analysis.


2013 ◽  
Vol 726-731 ◽  
pp. 816-819
Author(s):  
Tai Hua Yang ◽  
Qing Hua Zheng ◽  
Yang Wang

The unstable slope rock is one of the geological disasters of mountains along the transmission lines, which includes the falling style and the slumping type, and the former is very dangerous, and threat to the security of transmission line. By means of a typical example study about the falling dangerous rock mass along the 10kV transmission lines, this paper analyzes qualitatively the basic characteristics, failure mechanism, influencing factors of the dangerous rock, et al., and calculated quantitatively the maximum depth affected by the impact of the dangerous rock to the transmission lines. The paper proposes the response measures of dangerous rocks risk, which is of a certain reference in other similar projects.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Hossein Taherynia ◽  
Mojtaba Mohammadi ◽  
Rasoul Ajalloeian

Assessment of the stability of natural and artificial rock slopes is an important topic in the rock mechanics sciences. One of the most widely used methods for this purpose is the classification of the slope rock mass. In the recent decades, several rock slope classification systems are presented by many researchers. Each one of these rock mass classification systems uses different parameters and rating systems. These differences are due to the diversity of affecting parameters and the degree of influence on the rock slope stability. Another important point in rock slope stability is appraisal hazard and risk analysis. In the risk analysis, the degree of danger of rock slope instability is determined. The Lashotor pass is located in the Shiraz-Isfahan highway in Iran. Field surveys indicate that there are high potentialities of instability in the road cut slopes of the Lashotor pass. In the current paper, the stability of the rock slopes in the Lashotor pass is studied comprehensively with different classification methods. For risk analyses, we estimated dangerous area by use of the RocFall software. Furthermore, the dangers of falling rocks for the vehicles passing the Lashotor pass are estimated according to rockfall hazard rating system.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2807
Author(s):  
Shan Yang ◽  
Zitong Xu ◽  
Kaijun Su

The slope stability in an open-pit mine is closely related to the production safety and economic benefit of the mine. As a result of the increase in the number and scale of mine slopes, slope instability is frequently encountered in mines. Therefore, it is of scientific and social significance to strengthen the study of the stability of the slope rock mass. To accurately classify the stability of the slope rock mass in an open-pit mine, a new stability evaluation model of the slope rock mass was established based on variable weight and matter–element extension theory. First, based on the main evaluation indexes of geology, the environment, and engineering, the stability evaluation index system of the slope rock mass was constructed using the corresponding classification criteria of the evaluation index. Second, the constant weight of the evaluation index value was calculated using extremum entropy theory, and variable weight theory was used to optimize the constant weight to obtain the variable weight of the evaluation index value. Based on matter–element extension theory, the comprehensive correlation between the upper and lower limit indexes in the classification criteria and each classification was calculated, in addition to the comprehensive correlation between the rock mass indexes and the stability grade of each slope. Finally, the grade variable method was used to calculate the grade variable interval corresponding to the classification criteria of the evaluation index and the grade variable value of each slope rock mass, so as to determine the stability grade of the slope rock. The comparison results showed that the classification results of the proposed model are in line with engineering practice, and more accurate than those of the hierarchical-extension model and the multi-level unascertained measure-set pair analysis model.


2021 ◽  
Author(s):  
Ondřej Racek ◽  
Jan Blahůt ◽  
Filip Hartvich

Abstract. This article describes an innovative, complex and affordable monitoring system designed for joint observation of environmental parameters, rock block dilatations and temperature distribution inside the rock mass with a newly designed 3-meter borehole temperature sensor. Global radiation balance data are provided by pyranometers. The system introduces a novel approach for internal rock mass temperature measurement, which is crucial for the assessment of the changes in the stress field inside the rock slope influencing its stability. The innovative approach uses an almost identical monitoring system at different sites allowing easy setup, modularity and comparison of results. The components of the monitoring system are cheap, off-the-shelf and easy to replace. Using this newly designed system, we are currently monitoring three different sites, where the potential rock fall may endanger society assets below. The first results show differences between instrumented sites, although data time-series are relatively short. Temperature run inside the rock mass differs for each site significantly. This is very likely caused by different aspects of the rock slopes and different rock types. By further monitoring and data processing, using advanced modelling approaches, we expect to explain the differences among the sites, the influence of rock type, aspect and environmental variables on the long-term slope stability.


2013 ◽  
Vol 738 ◽  
pp. 109-112
Author(s):  
Fu Min Lu ◽  
Ting Yao Jiang

Considering the material property of the rock to the dangerous rock mass,the paper Looks the model parameter of AR( 1) model as the status vector, and uses Kalman filter method to analysis the deformation of the dangerous rock mass. The result shows that the method can improve the accuracy of fitting and forecasting of the model.


2012 ◽  
Vol 594-597 ◽  
pp. 358-361
Author(s):  
Shan Shan Zhang ◽  
Yu Liang Wu

Collapse is one of the major geological disasters all over the world and threats to life and property safety of people. To make a better understanding of the reason it occurs and how to deal with it, the Kim-Yun-Mine collapse is researched. There are one dangerous rock mass and two collapse accumulation body. The basic characteristics of the collapse is described clearly according to the geological exploration data, and the stability of the dangerous rock mass and the collapse accumulated body is analyzed in the way of engineering geology and stereographic projection. At last, we put forward comprehensive control measures based on the results of stability analysis and collapse characteristics.


Sign in / Sign up

Export Citation Format

Share Document