Introducing Interactivity in Disaster Recovery Simulations

2021 ◽  
Author(s):  
Mina Abadeer ◽  
Sameh Magharious ◽  
Sergei Gorlatch

Crowd simulations are widely used to study and predict the human behavior in disaster scenarios. In this paper, we introduce real-time user interactivity into the simulation process of virtual environments (e.g., buildings with rooms and doors between them). We develop a new tactical path-planning model that translates the interactive virtual environment into an abstract graph in order to calculate the shortest paths in real time. Our extension of the Vadere simulation framework with interactivity features allows the users to better understand the actual problem situations and to analyze them. Our experiments demonstrate the effectiveness of the approach by simulating the evacuation of students in groups and as individuals from the Schloss Muenster (the administrative building of the University of Muenster) in Germany. During simulation run time, the user can interact with the virtual environment spontaneously (e.g., by opening and closing doors) while our model recalculates the shortest paths for agents in real time.

2006 ◽  
Vol 21 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Jingzhou Yang ◽  
R. Timothy Marler ◽  
Steven Beck ◽  
Karim Abdel-Malek ◽  
Joo Kim

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 405
Author(s):  
Marcos Lupión ◽  
Javier Medina-Quero ◽  
Juan F. Sanjuan ◽  
Pilar M. Ortigosa

Activity Recognition (AR) is an active research topic focused on detecting human actions and behaviours in smart environments. In this work, we present the on-line activity recognition platform DOLARS (Distributed On-line Activity Recognition System) where data from heterogeneous sensors are evaluated in real time, including binary, wearable and location sensors. Different descriptors and metrics from the heterogeneous sensor data are integrated in a common feature vector whose extraction is developed by a sliding window approach under real-time conditions. DOLARS provides a distributed architecture where: (i) stages for processing data in AR are deployed in distributed nodes, (ii) temporal cache modules compute metrics which aggregate sensor data for computing feature vectors in an efficient way; (iii) publish-subscribe models are integrated both to spread data from sensors and orchestrate the nodes (communication and replication) for computing AR and (iv) machine learning algorithms are used to classify and recognize the activities. A successful case study of daily activities recognition developed in the Smart Lab of The University of Almería (UAL) is presented in this paper. Results present an encouraging performance in recognition of sequences of activities and show the need for distributed architectures to achieve real time recognition.


1997 ◽  
Vol 17 (3) ◽  
pp. 52-61 ◽  
Author(s):  
J.X. Chen ◽  
N.d.V. Lobo ◽  
C.E. Hughes ◽  
J.M. Moshell

2013 ◽  
Vol 483 ◽  
pp. 229-233
Author(s):  
Yi Liu ◽  
Shi Qi Li ◽  
Jun Feng Wang

This paper presents a feasible approach for modeling and locating of assembly\disassembly tools in the virtual scene: First, a novel point-vector model for tool is presented by means of abstracting the locating constraints of tools; Then, the mapping relationship for locating constraints between tools and parts is detailed; Finally, the best matching constraints algorithm is proposed on basis of point-vector model, which can calculate the locating constraints to the triangle model of part in real time. The proposed method has been integrated in the virtual assembly system to solve practical assembly problems.


2020 ◽  
Vol 65 (4) ◽  
pp. 170-177
Author(s):  
N. A. Kudusheva ◽  
◽  
I. K. Amanova ◽  

The article deals with the problem of the dynamics of personal self-efficacy of psychology students during their studies at the University. Theoretical approaches to understanding the term "self-efficacy" and its relation to related concepts related to psychological confidence and personal potential are analyzed.The actual problem of personal self-efficacy of psychology students is discussed.The results of an empirical study of the dynamic characteristics of self-efficacy of a sample of 80 students are presented, and statistical indicators of subject self-efficacy and development of self-efficacy in communication, their relationship with the motivation for choosing a profession and the level of self-attitude are determined.Dynamism, integrity and multicomponent nature of self-efficacy; non-linear nature of its development at different stages of training; the relationship between the level of self-efficacy development and the experience of independent work.


GEOMATICA ◽  
2013 ◽  
Vol 67 (4) ◽  
pp. 259-271 ◽  
Author(s):  
Hassan A. Karimi ◽  
Ming Jiang ◽  
Rui Zhu

With the success and popularity of vehicle navigation services, the demand for Pedestrian Navigation Services (PNS) has increased in recent years. PNS, while overlap in functionality with vehicle navigation services, must be designed specifically for the wayfinding and navigational needs and preferences of pedestrians. One major shortcoming of most existing PNS in outdoors is that they utilize and provide services based on road networks, resulting in PNS that do not effectively and properly track pedestrians as they usually walk on sidewalks, which have more segments and are narrower than roads. Challenges in building PNS include constructing appropriate sidewalk networks, continually tracking users in real time on sidewalks without interruption, and providing personalized routes as well as directions. In this paper, these challenges are highlighted and current trends in PNS, for both outdoors and indoors, are discussed and analyzed. A prototype PNS designed for the University of Pittsburg’s main campus sidewalk network (PNS-Pitt) is also discussed.


Sign in / Sign up

Export Citation Format

Share Document