The establishment of a stolen-vehicle tracking management information system

2006 ◽  
Vol 25 (1) ◽  
pp. 71-76
Author(s):  
Shun-Hsing Chen ◽  
Wen-Tsann Lin ◽  
Ching-Chow Yang

This study establishes a stolen-vehicle tracking management information system (MIS) combining information technology (IT) equipment in a wireless local area network (WLAN), personal digital assistant (PDA), and charge couple devices (CCD) camera with vehicle license plate recognition (LPR) technology. First, the police setup CCD cameras at fixed locations or in police vehicles to monitor every moving vehicle and fetch plate information to match retrieved plate information compared with stolen-vehicle databases. Second, when a stolen-vehicle is detected, the system communicates real-time warning signals to PDA held by on-duty police to intercept the stolen vehicle. The real-time information delivery and communication provided by this system not only help the police to solve serious criminal cases and protect public life and property, but also increase management effectiveness and lower manpower costs.

2013 ◽  
Vol 416-417 ◽  
pp. 1160-1164
Author(s):  
Yong Chen ◽  
Bin Hu ◽  
Bo Li ◽  
Qing He ◽  
Hong Mo ◽  
...  

In this paper, we design and develop Vehicle License Plate Recognition (VLPR) System, which is one part of comprehensive video management platform for parking lot. Combined with intelligent video analysis module, the proposed VLPR system can not only capture the license plates of those vehicles through ENTRANCE and EXIT of parking lot, but also recognize the contents of the captured license plates. In addition, the driver and passenger in the front row of the vehicle can be captured too. The capture subsystem operates well on embedded Linux environment running on Hi3516 SoC chip, and test results of the VLPR system meet the requirements of accuracy and real-time field applications. The VLPR system is easy to expand and modified for other Management Information System to realize functions like personnel management, vehicle tracking, and more automatic and intelligent functions of parking lot management.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5401
Author(s):  
Mingzhi Song ◽  
Jiansheng Qian

The access points (APs) in a coal mine wireless local area network (WLAN) are generally sparsely distributed. It can, with difficulty, satisfy the basic requirements of the fingerprint positioning based on Wi-Fi. Currently, the effectiveness of positioning is ensured by deploying more APs in an underground tunnel, which significantly increases system cost. This problem can be solved by using the Virtual Access Point (VAP) method that introduces virtual access points (VAPs), which can be virtually arranged in any part of the positioning area without installing actual access points. The drawback of the VAP method is that the generated received signal strength (RSS) value of a VAP is calculated based on the mapping of RSS value from only one corresponding access point (AP). This drawback does not consider the correlation between different AP signals and the generated RSS value of a VAP, which makes the modeling of fingerprint samples and real-time RSS collection incomplete. This study proposed a Multi-Association Virtual Access Point (MA-VAP) method takes into account the influence of multi-association. The multi-association coefficient is calculated based on the correlation between the RSS values of a VAP and multiple access points (APs). Then, the RSS value generated by a VAP is calculated using the multi-association function. The real-time collected RSS values from multiple APs related to this VAP are the input of the multi-association function. The influence of the number of VAPs and their arrangement on positioning accuracy is also analyzed. The experimental positioning results show that the proposed MA-VAP method achieves better positioning performance than the VAP method for the same VAP arrangement. Combined with the Weight K-Nearest Neighbors (WKNN) algorithm and Kernel Principal Component Analysis (KPCA) algorithm, the positioning error of the MA-VAP method of the error distance cumulative distribution function (CDF) at 90% is 4.5 m (with WKNN) and 3.5 m (with KPCA) in the environment with non-line-of-sight (NLOS) interference, and the positioning accuracy is improved by 10% (with WKNN) and 22.2% (with KPCA) compared with the VAP method. The MA-VAP method not only effectively solves the fingerprint positioning problem when APs are sparse deployed, but also improves the positioning accuracy.


2012 ◽  
Vol 217-219 ◽  
pp. 2658-2663
Author(s):  
Xiao Rong Chen ◽  
Lin Bai ◽  
Tong Wu

This paper analyses the actual applications demand of the real-time PCB production quality management information system for the electronic product manufacturing enterprises, has established functional model for the real-time PCB production and quality management information system, and has used of mathematical statistics and mathematical logic principles, methods to analyzed of PCB production quality information, which was collected in real-time, finally, has established a Quality Information System PCB, this system achieves the various production processes and product quality tracking and retroactively for PCB.


Author(s):  
Pradhumna Lal Shrestha ◽  
Michael Hempel ◽  
Sushanta Rakshit ◽  
Hamid Sharif ◽  
John Punwani ◽  
...  

Traditional Wireless Sensor Network (WSN) solutions have been deemed insufficient to address the requirements of freight railroad companies to implement real-time monitoring and control of their trains, tracks and wayside equipment. With only ZigBee-based elements, the transmission capabilities of WSN devices are limited in terms of coverage range and throughput. This leads to severe delay and congestion in the network, particularly in railroad scenarios that usually require the nodes to be arranged in linear chain-like topology. In such a multi-hop topology to communicate from one end of a train to the locomotive — and due to ZigBee’s limited communication range — data needs to be transmitted using a very high number of hops and thus generates long delays and congestion problems. To overcome this drawback, we have proposed a heterogeneous multi-hop networking approach called “Hybrid Technology Networking” (HTN). In HTN we combined Wireless Local Area Network (WLAN) technologies like WiFi, which provide improved communication range and higher data rates, with low-power communication technologies like ZigBee. This significantly reduces the number of hops required to deliver data across the network and hence solves the issues of delay and congestion, while also achieving superior enery efficiency and network lifetime. The sensor nodes are logically divided into clusters and each cluster has a WiFi “gateway”. All intra-cluster communication is achieved via IEEE 802.15.4 and ZigBee protocols, while all inter-cluster communication utilizes WiFi protocol standards. To implement our proposed technology in railroad networks, we are designing hardware prototypes and simulation models to evaluate the functionality and performance of our HTN solution, which is designed around a dual network stack design governed by the HTN protocol. This ensures full compliance with IEEE and industry communication protocols for interoperability. Since no simulation tools that seamlessly combine both WSN and WLAN technologies in a single module exist, we wrote our own simulation environment using OPNET. In this paper, we have provided information of implementing the HTN protocol in OPNET and the simulation results for different scenarios relevant to railroad operations. These results will demonstrate the efficacy of our proposed system as well as provide the baseline data for testing the hardware devices in live networks. Under simulated traffic and channel conditions and device configurations, we observed a decrease of 77.27% in end-to-end delay and an increase of 69.70% in received data volume when using HTN compared to ZigBee-only multi-hop networks, simulated over 14 railcars in railroad-relevant scenarios.


2020 ◽  
Author(s):  
Noah J. Goodall

Many transportation agencies use re-identification technologies to identify vehicles at multiple points along the roadway as a way to measure travel times and congestion. Examples of these technologies include license plate readers, toll tag transponders, and media access control (MAC) address scanners for Bluetooth devices. Recent advancements have allowed for the detection of unique MAC addresses from Wi-Fi and wireless local area network (WLAN) enabled devices. This paper represents one of the first attempts to measure the fundamental characteristics of Wi-Fi re-identification technology as it applies to transportation data collection. Wi-Fi sampling rates, re-identification rates, range, transmission success rates, and probability of discovery of sensors and mobile devices were measured, and a model of probability of detection is presented. Field tests found that mobile phones routinely experienced significant time gaps between Wi-Fi transmissions. The study recommends that Wi-Fi sensors be deployed at low-volume, low-speed roadways, with sensors positioned near intersections where vehicles are likely to slow or stop. Due to Wi-Fi’s relatively low probability of discovery, the technology may produce poor results in applications that require re-identifying vehicles over multiple consecutive sensors.


Author(s):  
C Mohanapriya ◽  
J Govindarajan

<p>The video streaming is one of the important application which consumes more bandwidth compared to non-real-time traffic. Most of the existing video transmissions are either using UDP or RTP over UDP. Since these protocols are not designed with congestion control, they affect the performance of peer video transmissions and the non-real-time applications. Like TFRC, Real-Time Media Congestion Avoidance (RMCAT) is one of the recently proposed frameworks to provide congestion control for real-time applications. Since the need for video transmission is increasing over the wireless LAN, in this paper the performance of the protocol was studied over WLAN with different network conditions. From the detailed study, we observed that RMCAT considers the packet losses due to the distance and channel conditions as congestion loss, and hence it reduced the sending rate thereby it affected the video transmission.</p>


Wireless Local Area Network (WLAN) is an infrastructure network in which nodes are connected to a centralized system to provide Internet access to mobile users by radio waves. But WLANs are vulnerable to Medium Access Control (MAC) layer Denial of Service (DoS) attacks due to the susceptibility of the management frames. An attacker can spoof the MAC address of the legitimate client and perform de-authentication attack to disconnect WLANs users from the access point. Many free tools are available in Kali Linux Operating System (OS) by which this attack can be performed and cause a security threat to WLAN users. The consequences of de-authentication DoS attack are frequent disconnection from Internet, traffic redirection, man-in-the-middle attack, and congestion. Despite enormous efforts in combating de-authentication DoS attack in the past decade, this attack is still a serious threat to the security of the cyber world. Medium Access Control Spoof Detection and Prevention (MAC SDP) DoS algorithm performs detection and prevention of de-authentication attack caused by spoofing MAC address. This algorithm is modified to make it more immune to the de-authentication attack and implemented in real-time scenario. The results show that the proposed technique increases the packet flow rate by 20.36%, reduces the packet loss by 95.71%, and reduces the down time and recovery time by 0.39 sec and 0.9 sec respectively as compared to MAC SDP DoS algorithm.


Sign in / Sign up

Export Citation Format

Share Document