Ameliorating Ribosylation-Induced Amyloid-β Pathology by Berberine via Inhibiting mTOR/p70S6K Signaling

2020 ◽  
pp. 1-12
Author(s):  
Yang-Yang Wang ◽  
Qian Yan ◽  
Zhen-Ting Huang ◽  
Qian Zou ◽  
Jing Li ◽  
...  

Background: Berberine (BBR) plays a neuroprotective role in the pathogenesis of Alzheimer’s disease (AD), inhibiting amyloid-β (Aβ) production and promoting Aβ clearance. Advanced glycation end products (AGEs) promote Aβ aggregation and tau hyperphosphorylation. The activation of mTOR signaling occurring at the early stage of AD has a prominent impact on the Aβ production. This work focused on whether BBR regulates the production and clearance of ribosylation-induced Aβ pathology via inhibiting mTOR signaling. Objective: To explore whether BBR ameliorates ribosylation-induced Aβ pathology in APP/PS1 mice. Methods: Western blot and immunofluorescence staining were used to detect the related proteins of the mammalian target of Rapamycin (mTOR) signaling pathway and autophagy, as well as the related kinases of Aβ generation and clearance. Tissue sections and Immunofluorescence staining were used to observe Aβ42 in APP/PS1 mice hippocampal. Morris water maze test was used to measure the spatial learning and memory of APP/PS1 mice. Results: BBR improves spatial learning and memory of APP/PS1 mice. BBR limits the activation of mTOR/p70S6K signaling pathway and enhances autophagy process. BBR reduces the activity of BACE1 and γ-secretase induced by D-ribose, and enhances Aβ-degrading enzymes and Neprilysin, and inhibits the expression of Aβ in APP/PS1 mice. Conclusion: BBR ameliorates ribosylation-induced Aβ pathology via inhibiting mTOR/p70S6K signaling and improves spatial learning and memory of the APP/PS1 mice.

2020 ◽  
Author(s):  
Yang-Yang Wang ◽  
Qian Yan ◽  
Zhen-Ting Huang ◽  
Qian Zou ◽  
Jing Li ◽  
...  

Abstract Background: Berberine (BBR) plays a neuroprotective role in the pathogenesis of Alzheimer’s disease (AD), inhibiting β-amyloid (Aβ) production and promoting Aβ clearance. Advanced glycation end products (AGEs) promote Aβ aggregation and tau hyperphosphorylation. The activation of mTOR signaling occurring at the early stage of AD has a prominent impact on the Aβ production. This work focused on whether BBR regulates the production and clearance of ribosylation-induced Aβ pathology via inhibiting mTOR signaling.Methods: Western Blot and Immunofluorescence staining were used to detect the related proteins of the mammalian target of Rapamycin(mTOR) signaling pathway and autophagy, as well as the related kinases of Aβ generation and clearance. Tissue sections and Immunofluorescence staining were used to observe Aβ1-42 in APP/PS1 mice hippocampal. Morris water maze (MWM) test was used to measure the spatial learning and memory of APP/PS1 mice.Results: BBR improves spatial learning and memory of APP/PS1 mice. BBR limits the activation of mTOR/p70S6K signaling pathway and enhances autophagy process. BBR reduces the activity of BACE1and γ-secretase induced by D-ribose, and enhances Aβ-degrading enzymes and Neprilysin, and inhibits the expression of Aβin APP/PS1 mice.Conclusions: BBR ameliorates ribosylation-induced Aβ pathology via inhibiting mTOR/p70S6K signaling, and improves spatial learning and memory of the APP/PS1 mice.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dan Song ◽  
Yaohua Chen ◽  
Cheng Chen ◽  
Lili Chen ◽  
Oumei Cheng

Abstract Purpose and background Previous studies have suggested that promoting endogenous neurogenesis has great significance for the recovery of cognitive dysfunction caused by cerebral ischemia (CI). Pharmacological inhibition of GABAB receptor can enhance neurogenesis in adult healthy and depressed mice. In the study, we intended to investigate the effects of GABAB receptor antagonists on cognitive function and hippocampal neurogenesis in mice following CI. Methods Adult mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 20 min to induce CI and treated with CGP52432 (antagonist of GABAB receptor, CGP, 10 mg/kg intraperitoneal injection) starting 24 h after CI. The Morris water maze test was performed to test spatial learning and memory at day 28. Immunofluorescence was applied to detect neurogenesis in the DG region at day 14 and 28. In in vitro experiments, cell proliferation was detected by CCK8 and immunofluorescence, and the expression of cAMP/CREB signaling pathway-related proteins was detected by ELISA assay and Western blot. Results CGP significantly improved spatial learning and memory disorders caused by CI, and it enhanced the proliferation of neural stem cells (NSCs), the number of immature neurons, and the differentiation from newborn cells to neurons. In vitro experiments further confirmed that CGP dose-dependently enhanced the cell viability of NSCs, and immunofluorescence staining showed that CGP promoted the proliferation of NSCs. In addition, treatment with CGP increased the expression of cAMP, PKA, and pCREB in cultured NSCs. Conclusion Inhibition of GABAB receptor can effectively promote hippocampal neurogenesis and improve spatial learning and memory in adult mice following CI.


2021 ◽  
Author(s):  
Swati Som ◽  
Justin Antony ◽  
Palanisamy Dhanabal ◽  
Ponnusankar Sivasankaran

Abstract Diosgenin is a neurosteroid derived from the plants and has been previously reported for its numerous health beneficial properties, such as anti-arrhythmic, hypolipidemic, and antiproliferative effects. Although several studies conducted earlier suggested cognition enhancement actions of diosgenin against neurodegenerative disorders, but the molecular mechanisms underlying are not clearly understood. In the present study, we investigated the neuroprotective effect of diosgenin in the wistar rats that received an intracerebroventricular injection of Amyloid-β (1–42) peptides, representing a rodent model of Alzheimer’s disease (AD). Animals were treated with 100 and 200 mg/kg/p.o of diosgenin for 28 days, followed by Amyloid-β (1–42) peptides infusion. Animals were assessed for the spatial learning and memory by using radial arm maze and passive avoidance task. Subsequently, animals were euthanized and brains were collected for biochemical estimations and histopathological studies. Our results revealed that, diosgenin administration dose dependently improved the spatial learning and memory and protected the animals from Amyloid-β (1–42) peptides induced disrupted cognitive functions. Further, biochemical analysis showed that diosgenin successfully attenuated Amyloid-β (1–42) mediated plaque load, oxidative stress, neuroinflammation and elevated acetylcholinesterase activity. In addition, histopathological evaluation also supported neuroprotective effects of diosgenin in hippocampus of rat brain when assessed using hematoxylin-eosin and Cresyl Violet staining. Thus, the aforementioned effects suggested protective action of diosgenin against Aβ (1–42) induced neuronal damage and thereby can serve as a potential therapeutic candidate for AD.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Peng Ren ◽  
Jingwei Chen ◽  
Bingxuan Li ◽  
Mengzhou Zhang ◽  
Bei Yang ◽  
...  

Introduction. Alzheimer’s disease (AD), the most common neurodegenerative disorder, is characterized by the accumulation of amyloid-β (Aβ) peptide and hyperphosphorylated tau protein. Accumulating evidence has revealed that the slow progressive deterioration of AD is associated with oxidative stress and chronic inflammation in the brain. Nuclear factor erythroid 2- (NF-E2-) related factor 2 (Nrf2), which acts through the Nrf2/ARE pathway, is a key regulator of the antioxidant and anti-inflammatory response. Although recent data show a link between Nrf2 and AD-related cognitive decline, the mechanism is still unknown. Thus, we explored how Nrf2 protects brain cells against the oxidative stress and inflammation of AD in a mouse model of AD (APP/PS1 transgenic (AT) mice) with genetic removal of Nrf2. Methods. The spatial learning and memory abilities of 12-month-old transgenic mice were evaluated using a Morris water maze test. Hippocampal levels of Nrf2, Aβ, and p-tauS404 and of astrocytes and microglia were determined by immunostaining. Inflammatory cytokines were determined by ELISA and quantitative real-time polymerase chain reaction (qRT-PCR). Oxidative stress was measured by 8-hydroxydeoxyguanosine immunohistochemistry, and the antioxidant response was determined by qRT-PCR. Results. The spatial learning and memory abilities of AT mice were impaired after Nrf2 deletion. Aβ and p-tauS404 accumulation was increased in the hippocampus of AT/Nrf2-KO mice. Astroglial and microglial activation was exacerbated, followed by upregulation of the proinflammatory cytokines IL-1β, IL-6, and TNF-α. Conclusion. Our present results show that Nrf2 deficiency aggravates AD-like pathology in AT mice. This phenotype was associated with increased levels of oxidative and proinflammatory markers, which suggests that the Nrf2 pathway may be a promising therapeutic target for AD.


2020 ◽  
Author(s):  
Kazunori Sasaki ◽  
Noelia Geribaldi-Doldan ◽  
Qingqing Wu ◽  
Julie Davies ◽  
Francis G. Szele ◽  
...  

Abstract Background Much attention has recently focused on nutraceuticals which are widely used to promote health. In particular, nutraceuticals with minimal side effects have been developed for preventing or treating neurological diseases such as Alzheimer’s disease (AD). The present study was conducted to investigate the potential effect on neural development and function of the microalgae Aurantiochytrium sp. as a nutraceutical. Methods To test the neuroprotection of ethanol extract of Aurantiochytrium (EEA) and n-Hex layer of EEA (HEEA), amyloid-beta (Aβ)-stimulated SH-SY5Y cells was used for in vitro AD model. We then assessed the enhancement of neurogenesis of EEA and HEEA using murine ex vivo neurospheres. We also administered EEA or HEEA to SAMP8 mice, a non-transgenic strain with accelerated aging and Alzheimer’s-like memory loss for evaluation of spatial learning and memory using MWM test. Finally, we performed immunohistochemical analysis using mice brain fed with EEA for assessment of neurogenesis. Results Pre-treatment of SH-SY5Y cells with EEA or the squalene-rich fraction of EEA, n-Hex layer (HEEA), ameliorated Aβ-induced cytotoxicity. Interestingly, only EEA-treated cells showed a significant increase in cell metabolism and intracellular ATP production. Moreover, EEA treatment significantly increased the number of neurospheres, whilst HEEA treatment significantly increased the number of β-III-tubulin + young neurons and GFAP + astrocytes. SAMP8 mice were given 50 mg/kg EEA or HEEA orally for 30 days. Learning ability was assessed in the Morris water maze test. EEA and HEEA decreased escape latency time in SAMP8 mice, indicating improved memory. To detect activated stem cells and newborn neurons, we administered BrdU for 9 days and measured BrdU + cells in the dentate gyrus, a neurogenic stem cell niche of the hippocampus. In SAMP8 mice, EEA rapidly and significantly increased the number of BrdU + GFAP + stem cells as well as their progeny, BrdU + NeuN + mature neurons. Conclusions Our data in aggregate indicate that EEA and its constituents could be developed into a nutraceutical for promoting brain health and function against some age-related diseases including neurodegenerative desease, particularly AD.


2019 ◽  
Author(s):  
Kai-Yuan Jhan ◽  
Guan-Jhih Lai ◽  
Pi-Kai Chang ◽  
Ren-Yu Tang ◽  
Chien-Ju Cheng ◽  
...  

Abstract BackgroundParasitic infections may cause significant effects on behavior, learning, and memory of the hosts. In the brain of mice heavily infected with Angiostrongylus cantonensis, severe damages have been observed in the hippocampus. This component has been considered to have associations with spatial learning and memory in human and vertebrates. This study was designed to determine the impairments in behavior, learning, and memory in BALB/c and C57BL/6 mice heavily infected with the parasite.MethodsEach mouse was inoculated with 50 third-stage larvae of A. cantonensis. After infection, daily changes in weight and dietary consumption, worm recoveries and survival rates were determined. The forced swimming test, open field test, and Morris water maze test were employed to evaluate depression- and anxiety-like behavior as well as impairments in spatial learning and memory, respectively. In addition, in the two strains of mice were also determined.ResultsThe worm recovery rate in the BALB/c mice was significantly lower than that of C57BL/6 mice since day 14 post-infection. The survival rate in infected BALB/c mice decreased to 0% by day 25 whereas those with swim-training survived three more days. On day 42, the C57BL/6 mice had a survival rate of 85.7% in the swimming group and 70% in the non-swimming group. Significant differences were found in weight between infected and non-infected BALB/c and C57BL/6 mice since day 13 and day 12, respectively with corresponding changes in the dietary consumption. Depression-like behavior was found in the infected BALB/c mice but not in C57BL/6 mice. However, anxiety-like behavior was found to occur only in C57BL/6 mice. Impaired spatial learning and memory were also found in the two strains of mice occurred since day 14 post-infection.ConclusionsResults of this study indicate that A. cantonensis causes depression, anxiety, and impairments in spatial learning and memory in heavily infected mice. Moreover, significantly higher severity was observed in the Th-2 dominant BALB/c mice.


Sign in / Sign up

Export Citation Format

Share Document