Characteristics of a bistable permanent magnet linear actuator with soft magnetic mover

2008 ◽  
Vol 27 (1-2) ◽  
pp. 43-52 ◽  
Author(s):  
Ivan Yatchev ◽  
Krastyo Hinov ◽  
Nikola Trifonov
2010 ◽  
Vol 23 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Ivan Yatchev ◽  
Vultchan Gueorgiev ◽  
Racho Ivanov ◽  
Krastio Hinov

The paper presents simulation of the dynamics of a permanent magnet linear actuator with soft magnetic mover and relatively long stroke 60 mm. The simulation is carried out using decoupled approach where the magnetic field problem is solved separately from the electric circuit and mechanical motion problems. The obtained results are compared with experiment. .


2013 ◽  
Vol 694-697 ◽  
pp. 1508-1511
Author(s):  
Xing Hua Wang ◽  
Xue Yuan Lin ◽  
Ming Hui Li ◽  
Yu Chen ◽  
Cheng Hui Zhang

Soft ferrite has the characteristics of high permeability, high resistivity, low loss. Based on this, a new flux-weakening structure of high-speed permanent magnet motor was presented. The structure relies on changing the saturation of soft magnetic ferrite to change the equivalent magnetic resistance of permanent magnet magnetic circuit in the motor, so the main flux of the permanent magnet motor can be reduced. By the 3D Finite Element analyses, the magnetic field distribution characters in the air gap can be pointed out. The analysis results prove the flux-weakening method is presented in this paper is correct and feasible. It can provide a practical flux-weakening method of the high-speed PM motor.


2021 ◽  
Author(s):  
Aymen Lachheb ◽  
Lilia El Amraoui

Linear switched reluctance actuators are a focus of study for many applications because of their simple and robust electromagnetic structure, despite their lower thrust force density when compared with linear permanent magnet synchronous motors. This chapter deals with incremental linear actuator have switched reluctance structure. First, the different topologies of linear incremental actuators are mentioned. Furthermore, a special interest is focused on the switched reluctance linear actuator then the operating principal is explained. In addition, an analytical model of the proposed actuator is developed without taking account of the saturation in magnetic circuit. Finally, the control techniques that can be applied to the studied actuator are presented.


Sign in / Sign up

Export Citation Format

Share Document