Research on active vibration control of flexible wing based on MFC actuator

2020 ◽  
Vol 64 (1-4) ◽  
pp. 565-571
Author(s):  
Yajun Luo ◽  
Fengfan Yang ◽  
Linwei Ji ◽  
Yahong Zhang ◽  
Minglong Xu ◽  
...  

An active vibration control scheme was proposed based on Macro Fiber Composite (MFC) actuators for the bending and torsional vibration control of large flexible lightweight wing structures. Firstly, a finite element modeling and modal analysis of a flexible wing are carried out. Further, the number, type, and location distribution of the MFC actuators bonded on the supported beam of the wing are designed. Then, the actuated characteristics of the two kinds of MFC actuators required for bending and torsional vibration controls was theoretically analyzed. The simulation model of the overall vibration control system was also finally obtained. Finally, through ANSYS simulation analysis, the vibration control effect of the current control system on the first two-order low-frequency modal response of the wing structure is given. The simulation results show that the proposed active vibration control scheme has specific feasibility and effectiveness.

2000 ◽  
Author(s):  
Sathya V. Hanagud ◽  
Patrick J. Roberts

Abstract In most structures, fatigue critical areas are associated with regions of high stresses. Sometimes, passive stiffening of structures can displace these high stress regions. Thus, for most applications, active vibration control is preferred. However, the question of whether an active vibration control scheme involving a set of actuators will reduce stresses in the whole structure or create high stress areas in the vicinity of the actuators arises. In previous works, this question has been addressed for cantilever beams which showed that the stresses are reduced by approximately the same order of magnitude as the reduction in vibrations. However, many aerospace structures are constructed of thin walled components whose response to vibration reduction can be very different than that of beams. In this paper, the stresses induced by an active vibration control system, based on the use of an offset piezoceramic stack actuator with acceleration feedback control, are investigated in a plate structure. A 3-D finite element simulation of the closed loop active vibration control system is developed and both the closed loop stresses and vibration amplitude reductions are studied.


1990 ◽  
Vol 112 (1) ◽  
pp. 8-15 ◽  
Author(s):  
Hong Su ◽  
S. Rakheja ◽  
T. S. Sankar

Vibration-isolation characteristics of an active vibration control system incorporating an electromagnetic force generator (actuator) are investigated. The electromagnetic force generator is modeled as a first-order dynamical system and the influence of dynamics of the force generator on the vibration-isolation performance of the active isolator is investigated via computer simulation. It is concluded that the dynamics of the force generator affect the vibration-isolation performance significantly. An active control scheme, based upon absolute position, velocity, and relative position response variables, is proposed and investigated. In view of the adverse effects of generator dynamics, the proposed control scheme yields superior vibration isolation performance. Stability analysis of the active vibration control system is carried out to determine the limiting values of various feedback control gains.


2005 ◽  
Vol 128 (2) ◽  
pp. 256-260 ◽  
Author(s):  
Xianmin Zhang ◽  
Arthur G. Erdman

The optimal placement of sensors and actuators in active vibration control of flexible linkage mechanisms is studied. First, the vibration control model of the flexible mechanism is introduced. Second, based on the concept of the controllability and the observability of the controlled subsystem and the residual subsystem, the optimal model is developed aiming at the maximization of the controllability and the observability of the controlled modes and minimization of those of the residual modes. Finally, a numerical example is presented, which shows that the proposed method is feasible. Simulation analysis shows that to achieve the same control effect, the control system is easier to realize if the sensors and actuators are located in the optimal positions.


2021 ◽  
Author(s):  
Yong Xia

Vibration control strategies strive to reduce the effect of harmful vibrations such as machining chatter. In general, these strategies are classified as passive or active. While passive vibration control techniques are generally less complex, there is a limit to their effectiveness. Active vibration control strategies, which work by providing an additional energy supply to vibration systems, on the other hand, require more complex algorithms but can be very effective. In this work, a novel artificial neural network-based active vibration control system has been developed. The developed system can detect the sinusoidal vibration component with the highest power and suppress it in one control cycle, and in subsequent cycles, sinusoidal signals with the next highest power will be suppressed. With artificial neural networks trained to cover enough frequency and amplitude ranges, most of the original vibration can be suppressed. The efficiency of the proposed methodology has been verified experimentally in the vibration control of a cantilever beam. Artificial neural networks can be trained automatically for updated time delays in the system when necessary. Experimental results show that the developed active vibration control system is real time, adaptable, robust, effective and easy to be implemented. Finally, an experimental setup of chatter suppression for a lathe has been successfully implemented, and the successful techniques used in the previous artificial neural network-based active vibration control system have been utilized for active chatter suppression in turning.


1998 ◽  
Vol 20 (3) ◽  
pp. 176-183 ◽  
Author(s):  
Hiroto Higashiyama ◽  
Masaaki Yamada ◽  
Yukihiko Kazao ◽  
Masao Namiki

Sign in / Sign up

Export Citation Format

Share Document