Grape skin extract prevents UV irradiation induced DNA damage of normal human epidermal keratinocytes cells

2020 ◽  
Vol 10 (4) ◽  
pp. 585-601
Author(s):  
Yutong Song ◽  
Serene Ezra Corpus Bondad ◽  
Hirotaka Tajima ◽  
Tomoyuki Sato ◽  
Nobutaka Wakamiya ◽  
...  

BACKGROUND: There is concern that DNA damage may occur in skin cells due to UV irradiation. In this study, we investigated whether extracts from grape skin, which should be discarded, can suppress DNA damage caused by UV radiation. OBJECTIVE: This study aims to investigate the effectivity of GSE in diminishing UV-induced cytotoxicity in normal human epidermal keratinocytes (NHEK) cells. METHODS: The polyphenol content in GSE was carried out using the HPLC instrument. UV dose was selected by measurement of cell viability, and ELISA results of DNA photoproduct. Optimum extracts condition of grape skin selected by DNA photoproduct content as well as at this condition; Bax/Bcl-2 ratio and cytochrome c gene expressions were evaluated by Western blotting. RESULTS: In this study, we confirmed that GSE protect against DNA damage-induced cell death. Condition for 80% EtOH for 24 h at 60 °C was suitable to extract for grape skin. Red grape skin (Zweigelt) was more effective than white grape skin (Niagara) in preventing (before irradiation) and repairing (after irradiation). UV-induced upregulation of Bax/Bcl-2 ratio and cytochrome c expression were reduced by GSE treatment. CONCLUSIONS: The study demonstrated a promising potential of GSEs in skin therapeutics application.

2021 ◽  
Vol 22 (3) ◽  
pp. 1101
Author(s):  
Yu-Dan Tian ◽  
Min Hwa Chung ◽  
Qing-Ling Quan ◽  
Dong Hun Lee ◽  
Eun Ju Kim ◽  
...  

Activin A receptor type 1C (ACVR1C), a type I transforming growth factor-β (TGF-β) receptor, has been implicated in sensitive skin and psoriasis and is involved in the regulation of metabolic homeostasis as well as cell proliferation and differentiation. In this study, we identified a novel role of ACVR1C in the ultraviolet (UV)-irradiation-induced reduction of epidermal lipogenesis in human skin. UV irradiation decreased ACVR1C expression and epidermal triglyceride (TG) synthesis in human skin in vivo and in primary normal human epidermal keratinocytes (NHEK) in vitro. Lipogenic genes, including genes encoding acetyl-CoA carboxylase (ACC) and sterol regulatory element binding protein-1 (SREBP1), were significantly downregulated in UV-irradiated NHEK. ACVR1C knockdown by shRNA resulted in greater decreases in SREBP1 and ACC in response to UV irradiation. Conversely, the overexpression of ACVR1C attenuated the UV-induced decreases in SREBP1 and ACC. Further mechanistic study revealed that SMAD2 phosphorylation mediated the ACVR1C-induced lipogenic gene modulation. Taken together, a decrease in ACVR1C may cause UV-induced reductions in SREBP1 and ACC as well as epidermal TG synthesis via the suppression of SMAD2 phosphorylation. ACVR1C may be a target for preventing or treating UV-induced disruptions in lipid metabolism and associated skin disorders.


1999 ◽  
Vol 255 (1) ◽  
pp. 64-69 ◽  
Author(s):  
Sophie Janssens ◽  
Luc Bols ◽  
Marc Vandermeeren ◽  
Guy Daneels ◽  
Marcel Borgers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document