Analysis and evaluation of the maximum throughput for data streaming over IEEE 802.15.4 wireless networks

2013 ◽  
Vol 19 (3) ◽  
pp. 181-202 ◽  
Author(s):  
Konstantin Mikhaylov ◽  
Jouni Tervonen
2020 ◽  
Vol 16 (3) ◽  
pp. 254-259
Author(s):  
Yehia R. Hamdy ◽  
Ahmed I Alghannam

ZigBee is widely used in wireless network in Internet of Things (IoT) applications to remotely sensing and automation due to its unique characteristics compared to other wireless networks. According to ZigBee classification of IEEE 802.15.4 standard, the network consists of four layers. The ZigBee topology is represented in second layer. Furthermore, the ZigBee topology consists of three topologies, star, tree and mesh. Also there are many transmission bands allowed in physical layer, such as 2.4 GHz, 915 MHz, 868 MHz. The aim of this paper is to evaluate the effect of ZigBee topologies on End to End delay and throughput for different transmission bands. Riverbed Modeler is used to simulate multiple ZigBee proposed scenarios and collect the results. The results of the study recommend which topology should be used at each transmission band to provide lowest End to End delay or obtain maximum throughput, which is case sensitive in some IoT applications that required for example minimum delay time or sending high amount of data.


2017 ◽  
Vol 15 ◽  
pp. 107-113 ◽  
Author(s):  
Josua Arndt ◽  
Lukas Krystofiak ◽  
Vahid Bonehi ◽  
Ralf Wunderlich ◽  
Stefan Heinen

Abstract. Power consumption in wireless networks is crucial. In most scenarios the transmission time is short compared to the idle listening time for data transmission, the most power is consumed by the receiver. In low latency systems there is a need for low power wake-up receivers (WuRx) that reduce the power consumption when the node is idle, but keep it responsive. This work presents a WuRx designed out of commercial components to investigate the needs of a WuRx when it is embedded in a Wireless Personal Area Network (WPAN) system in a real environment setup including WLAN and LTE communication and considering interferer rejection. The calculation necessary for the attenuation of those interferers is explained in detail. Furthermore, a system design is presented that fulfills the requirements for this environment and is build from off-the-shelf components.


Sign in / Sign up

Export Citation Format

Share Document