A feature fusion deep belief network method for intelligent fault diagnosis of rotating machinery

2018 ◽  
Vol 34 (6) ◽  
pp. 3513-3521 ◽  
Author(s):  
Hongkai Jiang ◽  
Haidong Shao ◽  
Xinxia Chen ◽  
Jiayang Huang
2020 ◽  
Vol 26 (17-18) ◽  
pp. 1538-1548
Author(s):  
Ying Zhang ◽  
Jinchen Ji ◽  
Bo Ma

This article proposes an optimized convolutional deep belief network for fault diagnosis of reciprocating compressors. Sparse filtering is first used to compress raw signal into compact time series by refining the most representative information and to reduce the computational burden. Then, the proposed convolutional deep belief network is adopted to learn the unsupervised features of the compressed signal without the need of feature extraction by human effort. To improve the generalization ability of the network, an optimized probabilistic pooling out is proposed in this article to replace the standard one in the pooling layer of the convolutional deep belief network. Finally, the unsupervised features calculated by the optimized convolutional deep belief network are fed as the input of the softmax regression classifier for fault identification. Four types of vibration signals reflecting different operating conditions are collected from the industry to validate the effectiveness of the proposed method. The obtained results demonstrate that the proposed convolutional deep belief network method can achieve a higher classification accuracy rate of up to 91% for fault diagnosis than the traditional methods and accomplish the fault diagnosis of reciprocating compressor effectively.


Author(s):  
Chun Cheng ◽  
Wei Zou ◽  
Weiping Wang ◽  
Michael Pecht

Deep neural networks (DNNs) have shown potential in intelligent fault diagnosis of rotating machinery. However, traditional DNNs such as the back-propagation neural network are highly sensitive to the initial weights and easily fall into the local optimum, which restricts the feature learning capability and diagnostic performance. To overcome the above problems, a deep sparse filtering network (DSFN) constructed by stacked sparse filtering is developed in this paper and applied to fault diagnosis. The developed DSFN is pre-trained by sparse filtering in an unsupervised way. The back-propagation algorithm is employed to optimize the DSFN after pre-training. Then, the DSFN-based intelligent fault diagnosis method is validated using two experiments. The results show that pre-training with sparse filtering and fine-tuning can help the DSFN search for the optimal network parameters, and the DSFN can learn discriminative features adaptively from rotating machinery datasets. Compared with classical methods, the developed diagnostic method can diagnose rotating machinery faults with higher accuracy using fewer training samples.


Sign in / Sign up

Export Citation Format

Share Document