scholarly journals Fault Diagnosis of Rotating Machinery Based on Combination of Deep Belief Network and One-dimensional Convolutional Neural Network

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 165710-165723 ◽  
Author(s):  
Yibing Li ◽  
Li Zou ◽  
Li Jiang ◽  
Xiangyu Zhou
Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 919
Author(s):  
Wanlu Jiang ◽  
Chenyang Wang ◽  
Jiayun Zou ◽  
Shuqing Zhang

The field of mechanical fault diagnosis has entered the era of “big data”. However, existing diagnostic algorithms, relying on artificial feature extraction and expert knowledge are of poor extraction ability and lack self-adaptability in the mass data. In the fault diagnosis of rotating machinery, due to the accidental occurrence of equipment faults, the proportion of fault samples is small, the samples are imbalanced, and available data are scarce, which leads to the low accuracy rate of the intelligent diagnosis model trained to identify the equipment state. To solve the above problems, an end-to-end diagnosis model is first proposed, which is an intelligent fault diagnosis method based on one-dimensional convolutional neural network (1D-CNN). That is to say, the original vibration signal is directly input into the model for identification. After that, through combining the convolutional neural network with the generative adversarial networks, a data expansion method based on the one-dimensional deep convolutional generative adversarial networks (1D-DCGAN) is constructed to generate small sample size fault samples and construct the balanced data set. Meanwhile, in order to solve the problem that the network is difficult to optimize, gradient penalty and Wasserstein distance are introduced. Through the test of bearing database and hydraulic pump, it shows that the one-dimensional convolution operation has strong feature extraction ability for vibration signals. The proposed method is very accurate for fault diagnosis of the two kinds of equipment, and high-quality expansion of the original data can be achieved.


Author(s):  
Canyi Du ◽  
Rui Zhong ◽  
Yishen Zhuo ◽  
Xinyu Zhang ◽  
Feifei Yu ◽  
...  

Abstract Traditional engine fault diagnosis methods usually need to extract the features manually before classifying them by the pattern recognition method, which makes it difficult to solve the end-to-end fault diagnosis problem. In recent years, deep learning has been applied in different fields, bringing considerable convenience to technological change, and its application in the automotive field also has many applications, such as image recognition, language processing, and assisted driving. In this paper, a one-dimensional convolutional neural network (1D-CNN) in deep learning is used to process vibration signals to achieve fault diagnosis and classification. By collecting the vibration signal data of different engine working conditions, the collected data are organized into several sets of data in a working cycle, which are divided into a training sample set and a test sample set. Then, a one-dimensional convolutional neural network model is built in Python to allow the feature filter (convolution kernel) to learn the data from the training set and these convolution checks process the input data of the test set. Convolution and pooling extract features to output to a new space, which is characterized by learning features directly from the original vibration signals and completing fault diagnosis. The experimental results show that the pattern recognition method based on a one-dimensional convolutional neural network can be effectively applied to engine fault diagnosis and has higher diagnostic accuracy than traditional methods.


2021 ◽  
Vol 1207 (1) ◽  
pp. 012003
Author(s):  
Xukun Hou ◽  
Pengjie Hu ◽  
Wenliao Du ◽  
Xiaoyun Gong ◽  
Hongchao Wang ◽  
...  

Abstract Aiming at the typical non-stationary and nonlinear characteristics of rolling bearing vibration signals, a multi-scale convolutional neural network method for bearing fault diagnosis based on wavelet transform and one-dimensional convolutional neural network is proposed. First, the signal is decomposed into multi scale components with wavelet transform, and then each scale component is reconstructed. The reconstructed signal is subjected to the Fourier transform to obtain the frequency spectrum representation, which is used as the input of the one-dimensional convolutional neural network. Finally, one-dimensional convolution neural network is used to learn the features of the input data and recognize the bearing fault. The performance of the model is verified by using data sets of rolling bearing. The results show that this method can intelligent feature extraction and obtain 99.94% diagnostic accuracy.


2020 ◽  
Vol 10 (12) ◽  
pp. 4303
Author(s):  
Yang Shao ◽  
Xianfeng Yuan ◽  
Chengjin Zhang ◽  
Yong Song ◽  
Qingyang Xu

Deep learning based intelligent fault diagnosis methods have become a research hotspot in the fields of fault diagnosis and the health management of rolling bearings in recent years. To effectively identify incipient faults in rotating machinery, this paper proposes a novel hybrid intelligent fault diagnosis framework based on a convolutional neural network and support vector machine (SVM). First, an improved one-dimensional convolutional neural network (1DCNN) was adopted to extract fault features, and the state information and intrinsic properties of the raw vibration signals were mined. Second, the extracted features were used to train the SVM, which was applied to classify the fault category. The proposed hybrid framework combined the excellent classification performance of the SVM for small samples and the strong feature-learning ability of CNN network. In order to tune the parameters of the SVM, an improved novel particle swarm optimization algorithm (INPSO) which combined the Tent map and Lévy flight strategy was proposed. Numerical experimental results indicated that the proposed PSO variant had a better performance in searching accuracy and convergence speed. At last, multiple groups of rolling bearing fault diagnosis experiments were carried out and experimental results showed that, with the proposed 1DCNN-INPSO-SVM model, the hybrid framework was capable of diagnosing with high precision for rolling bearings and superior to some traditional fault diagnosis methods.


Sign in / Sign up

Export Citation Format

Share Document