Numerical simulation of three dimensional flow in Yazidang Reservoir based on image processing

2020 ◽  
Vol 39 (2) ◽  
pp. 1591-1600
Author(s):  
Lingxiao Huang ◽  
Qiao Qiao ◽  
Lanxiang Zheng ◽  
Libo Liu ◽  
Wenjuan Zhao ◽  
...  

In order to study the water flow movement of the Yazidang Reservoir, this paper generates the initial terrain for the researched water area with the image stitching technology and image edge detection technology, establishes a 3D k - ɛ mathematical model, solves the equations discretely by FVM and SIMPLEC algorithms, studies the numerical simulation of the water flow movement of the reservoir under four working conditions, and analyzes the flow field on the surface and at the bottom of the reservoir. The results show the improved terrain pre-processing accuracy and efficiency of the researched water area and the rationality of the water flow field and rate simulation results, which means that the established 3D turbulence mathematical model can be applied to the numerical simulation of the reservoirs similar to the Yazidang Reservoir. The numerical simulation of 3D turbulence in Yazidang Reservoir provides a theoretical basis and practical application value for the numerical simulation of similar reservoirs.

2015 ◽  
Vol 9 (1) ◽  
pp. 585-593
Author(s):  
Wenbo Zhang ◽  
Chuo Yang ◽  
Yongxin Feng ◽  
Deyu Zhang

This study proposes a three-dimensional size detection system for inerratic magnetic sheets according to specific size parameter requirements, such as the volume of the industrial micro magnetic sheet. Based on the noise interference generated by the corresponding detection environment of the magnetic sheet, a hybrid filtering method for the inerratic magnetic sheet is also proposed here, which effectively implements denoising filtering. In the image edge detection module, the edge detection operator most suitable for detecting image edge extraction is selected, and in order to realize the inerratic shape detection in Hough transform, the measurement function of size parameters (including the top surface radius, tilt angle of the profile and top surface, profile thickness, and volume) for the micro cylinder magnetic sheet are designed and implemented. Measurement data, gathered through repeated experiments, builds a more effective detection system for magnetic sheet size than traditional methods at the millimeter level.


2011 ◽  
Vol 71-78 ◽  
pp. 2107-2111
Author(s):  
Hui Li ◽  
Xiao Jun Guo

Based on the principle and method of computational fluid dynamics (CFD), using the software, FLUENT, the inner water flow field in a hydrocyclone with air column was simulated and the flow details were studied roundly. This article analyzed the three-dimensional velocity field distribution, pressure field distribution and testified the reliability of numerical simulation to a certain extent. The “mixture” model was used to simulate the air column the first time and contrasted with experimental result, the simulated effect was proved effective. The results of this paper provided a good base and reference for the further research of solid-liquid separation.


2014 ◽  
Vol 541-542 ◽  
pp. 1288-1291
Author(s):  
Zhi Feng Dong ◽  
Quan Jin Kuang ◽  
Yong Zheng Gu ◽  
Rong Yao ◽  
Hong Wei Wang

Calculation fluid dynamics software Fluent was used to conduct three-dimensional numerical simulation on gas-liquid two-phase flow field in a wet flue gas desulfurization scrubber. The k-ε model and SIMPLE computing were adopted in the analysis. The numerical simulation results show that the different gas entrance angles lead to internal changes of gas-liquid two-phase flow field, which provides references for reasonable parameter design of entrance angle in the scrubber.


2019 ◽  
Vol 35 (3) ◽  
pp. 367-376 ◽  
Author(s):  
Qiang Shi ◽  
Hanping Mao ◽  
Xianping Guan

Abstract. To analyze the droplet deposition under the influence of the flow field of an unmanned aerial vehicle (UAV), a hand-held three-dimensional (3D) laser scanner was used to scan 3D images of the UAV. Fluent software was used to simulate the motion characteristics of droplets and flow fields under the conditions of a flight speed of 3 m/s and an altitude of 1.5 m. The results indicated that the ground deposition concentration in the nonrotor flow field was high, the spray field width was 2.6 m, and the droplet deposition concentration was 50 to 200 ug/cm2. Under the influence of the rotor flow field, the widest deposition range of droplets reached 12.8 m. Notably, the droplet deposition uniformity worsened, and the concentration range of the droplet deposition was 0 to 500 ug/cm2. With the downward development of the downwash flow field, the overall velocity of the flow field gradually decreased, and the influence interval of the flow field gradually expanded. In this article, the droplet concentration was verified under simulated working conditions by a field experiment, thereby demonstrating the reliability of the numerical simulation results. This research could provide a basis for determining optimal UAV operating parameters, reducing the drift of droplets and increasing the utilization rate of pesticides. Keywords: Unmanned aerial vehicle (UAV), Aerial application, Downwash flow field, Droplet deposition, Simulation analysis.


2011 ◽  
Vol 399-401 ◽  
pp. 1812-1815
Author(s):  
Feng Liang Yin ◽  
Sheng Zhu ◽  
Sheng Sun Hu

A three-dimensional mathematical model has been established to research the relation between the plasma reflection and status of keyhole during the keyhole PAW processing. It has been found that the strength of the plasma reflection is related to the keyhole dimension. Another condition to make the plasma refection appearance is that the keyhole or concave in the pool must be unsymmetrical about the axis of the plasma arc. The mechanism of detecting circuit designed based on the fact that the plasma refection is able to indicate the status of keyhole is mathematically studied. The result shows that the voltage signal in the detecting circuit can be used to indicate the status of keyhole.


2012 ◽  
Vol 588-589 ◽  
pp. 1355-1358
Author(s):  
Xiao Xing ◽  
Guo Ming Ye

During the splicing process of pneumatic splicer, the principle of yarn splicing is closely related to the flow field inside the splicing chamber. This paper presents a numerical simulation of the flow char-acteristics inside the splicing chamber of the pneumatic splicer. A three-dimensional grid and the realizable tur¬bulence model are used in this simulation. The numerical results of veloc¬ity vectors distribution inside the chamber are shown. Streamlines starting from the two air injectors are also acquired. Based on the simulation, the principle of yarn splicing of the pneumatic splicer is discussed. The airflow in the splicing chamber can be divided into three regions. In addition, the simulation results have well sup¬ported the principle of yarn splicing of pneumatic splicer claimed by the splicing chamber makers.


2013 ◽  
Vol 712-715 ◽  
pp. 1330-1334
Author(s):  
Yin Dong Song ◽  
Yin Nan Yuan ◽  
Chun Ping Wu ◽  
Yong Wang Li ◽  
Peng Zhe Qi ◽  
...  

Three dimensional transient numerical simulation on cylinder flow field of 4B26 diesel was done by AVL FIRE. Detailed flow field structure of diesel cylinder was calculated. The typical swirl flow and squish flow were established in 4B26 diesel engine chamber. swirl flow and squish flow can increase the fuel and air mixing rate, and can improve diesel combustion and can reduce emissions of pollutants. Oil beam could accelerate the air around it.


Sign in / Sign up

Export Citation Format

Share Document