Comprehensive evaluation of logistics enterprise competitiveness based on SEM model

2020 ◽  
pp. 1-11
Author(s):  
Yang Yaxu

The loose logistics market, the weak value-added service capabilities of enterprises, and the backward construction and operation of logistics networks have led to high logistics costs and low efficiency in some enterprises. In order to improve the comprehensive evaluation effect of enterprise logistics enterprise competitiveness, this paper builds a comprehensive evaluation model of logistics enterprise competitiveness based on SEM model based on machine learning technology. Moreover, in order to more accurately grasp the law of customer logistics mode selection behavior, this paper adds the adaptive value of the latent variables of the logistics mode service characteristics obtained through the SEM model to the utility function of the logistics mode to obtain the SEM-NL integrated model. In addition, starting from the analysis of the key factors affecting the competitiveness of enterprise logistics, this paper constructs an evaluation model of enterprise logistics competitiveness, and analyzes and studies the comprehensive competitiveness of enterprise logistics through two aspects of logistics actual competitiveness and logistics future development potential. The research results show that the model constructed in this paper is suitable for the comprehensive evaluation of the competitiveness of logistics enterprises.

2011 ◽  
Vol 66-68 ◽  
pp. 631-636
Author(s):  
Ye Zhou ◽  
Zhi Song Ye ◽  
Yun Zhu Wang

The low-carbon economy becomes a hot issue in every country after Copenhagen’s meeting, and Logistics enterprise is an important economic entity to achieve a low carbon economy, so how to effectively evaluate the effect of logistics enterprises and low-carbon benefits of emission reduction become a problem that really needed to solve. Therefore, it evaluated the effects of low-carbon benefits of logistics respectively from the economic benefits, logistics operational efficiency and CO2 emission reduction by AHP. Based on it, logistics enterprise evaluation model of low-carbon benefits was built in the way of fuzzy comprehensive evaluation, and finally verified the effectiveness of the evaluation system with a case.


2014 ◽  
Vol 6 ◽  
pp. 698159 ◽  
Author(s):  
Junxuan Chen ◽  
Suihuai Yu ◽  
Shuxia Wang ◽  
Zhengze Lin ◽  
Guochang Liu ◽  
...  

In the view of the current cockpit information interaction, facilities and other characteristics are increasingly multifarious; the early layout evaluation methods based on single or partial components, often cause comprehensive evaluation unilateral, leading to the problems of long development period and low efficiency. Considering the fuzziness of ergonomic evaluation and diversity of evaluation information attributes, we refine and build an evaluation system based on the characteristics of the current cockpit man-machine layout and introduce the different types of uncertain linguistic multiple attribute combination decision making (DTULDM) method in the cockpit layout evaluation process. Meanwhile, we also establish an aircraft cockpit ergonomic layout evaluation model. Finally, an experiment about cockpit layout evaluation is given, and the result demonstrates that the proposed method about cockpit ergonomic layout evaluation is feasible and effective.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1365-1372
Author(s):  
Xiaohui Mao ◽  
Liping Fei ◽  
Xianping Shang ◽  
Jie Chen ◽  
Zhihao Zhao

The measurement performance of road vehicle automatic weighing instrument installed on highways is directly related to the safety of roads and bridges. The fuzzy number indicates that the uncertain quantization problem has obvious advantages. By analyzing the factors affecting the metrological performance of the road vehicle automatic weighing instrument, combined with the fuzzy mathematics theory, the weight evaluation model of the dynamic performance evaluation of the road vehicle automatic weighing instrument is proposed. The factors of measurement performance are summarized and calculated, and the comprehensive evaluation standard of the metering performance of the weighing equipment is obtained, so as to realize the quantifiable analysis and evaluation of the metering performance of the dynamic road vehicle automatic weighing instrument in use, and provide data reference for adopting a more scientific measurement supervision method.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (6) ◽  
pp. 34-39
Author(s):  
AIYU QU ◽  
YANHUI AO ◽  
JUN YAN ◽  
GUIGAN FANG

To develop new wood cellulose resources and fast-growing pulpwood plantation fiber sources, it is very important to evaluate their pulping properties. A comprehensive multi-index pulping-suitability evaluation model is investigated in this paper by considering four fast-growing wood species. First, a new evaluation-index system for kraft pulp was developed based on traditional evaluation-index systems. Then, the membership degree of every index was analyzed to obtain a fuzzy matrix. The proportional contribution of each parameter to the main pulping properties could then be determined. Finally, a comprehensive evaluation model of kraft pulp properties was developed. The model is reliable compared with traditional assessment methods. The results confirmed the feasibility and rationality of developing new wood cellulose resources and fast-growing pulpwood plantations using fuzzy comprehensive evaluations.


2018 ◽  
pp. 172-182 ◽  
Author(s):  
Shengmin CAO

This paper mainly studies the application of intelligent lighting control system in different sports events in large sports competition venues. We take the Xiantao Stadium, a large­scale sports competition venue in Zaozhuang City, Shandong Province as an example, to study its intelligent lighting control system. In this paper, the PID (proportion – integral – derivative) incremental control model and the Karatsuba multiplication model are used, and the intelligent lighting control system is designed and implemented by multi­level fuzzy comprehensive evaluation model. Finally, the paper evaluates the actual effect of the intelligent lighting control system. The research shows that the intelligent lighting control system designed in this paper can accurately control the lighting of different sports in large stadiums. The research in this paper has important practical significance for the planning and design of large­scale sports competition venues.


Author(s):  
Lahcen El Mentaly ◽  
Abdellah Amghar ◽  
Hassan Sahsah

Background: The solar field on our planet is inexhaustible, which favors the use of photovoltaic electricity which generates no nuisance: no greenhouse gases, no waste. Methods: It is a high value-added energy that is produced directly at the place of consumption through photovoltaic (PV) solar panels. Notwithstanding these advantages, the maximum power depends strongly on solar irradiation and temperature, which means that a Maximum Power Point Tracking (MPPT) controller must be inserted between the PV panel and the load in order to follow the Maximum Power Point (MPP) continuously and in real time. In this work, MPP’s behavior was simulated at different temperatures and solar irradiations using seven techniques which identify the MPP by different methods. Results: The novelty of this work is that the seven MPPT methods were compared according to a very selective criterion which is the MPPT efficiency as well as a purely digital duty cycle control without using the PI controller. The simulation under the PSIM software shows that the FLC, TP, FSCC, TG, HC and IC methods have almost the same efficiency of 99%, whereas the FOCV method had a low efficiency of 96%. Conclusion: This makes it possible to conclude that the best methods are FLC, HC and IC because they use fewer sensors compared to the rest.


2013 ◽  
Vol 756-759 ◽  
pp. 715-719
Author(s):  
Huan Cheng Zhang ◽  
Ya Feng Yang ◽  
Feng Li ◽  
Li Nan Shi

In the College, performance evaluation system is directly related to the harmonious development of the school. Taking into account the factors in the evaluation system is fuzzy, so this paper uses fuzzy comprehensive evaluation model. But the model is too subjective, so this paper combines neural network and data envelopment analysis method, which ensures that fuzzy comprehensive evaluation model is reasonable and scientific, and good school development and teacher self-interest. The performance assessment process, not only enables the combination of qualitative and quantitative analysis, but also fair and reasonably reflect the achievements of teachers, while this method is easy to use, wide application, and can be well applied in practice.


Sign in / Sign up

Export Citation Format

Share Document