A combined model based on feature selection and support vector machine for PM2.5 prediction

2021 ◽  
pp. 1-15
Author(s):  
Xiaocong Lai ◽  
Hua Li ◽  
Ying Pan

With the increasing attention to the environment and air quality, PM2.5 has been paid more and more attention. It is expected to excavate useful information in meteorological data to predict air pollution, however, the air quality is greatly affected by meteorological factors, and how to establish an effective air quality prediction model has always been a problem that people urgently need to solve. This paper proposed a combined model based on feature selection and Support Vector Machine (SVM) for PM2.5 prediction. Firstly, aiming at the influence of meteorological factors on PM2.5, a feature selection method based on linear causality is proposed to find out the causality between features and select the features with strong causality, so as to remove the redundant features in air pollution data and reduce the workload of data analysis. Then, a method based on SVM is proposed to analyze and solve the nonlinear problems in the data, for reducing the prediction error, a method of particle swarm optimization is also used to optimize SVM parameters. Finally, the above methods are combined into a prediction model, which is suitable for the current air pollution control. 12 representative data sets on the UCI (University of California, Irvine) website are used to verify the combined model, and the experimental results show that the model is feasible and effective.

Author(s):  
Gang Liu ◽  
Chunlei Yang ◽  
Sen Liu ◽  
Chunbao Xiao ◽  
Bin Song

A feature selection method based on mutual information and support vector machine (SVM) is proposed in order to eliminate redundant feature and improve classification accuracy. First, local correlation between features and overall correlation is calculated by mutual information. The correlation reflects the information inclusion relationship between features, so the features are evaluated and redundant features are eliminated with analyzing the correlation. Subsequently, the concept of mean impact value (MIV) is defined and the influence degree of input variables on output variables for SVM network based on MIV is calculated. The importance weights of the features described with MIV are sorted by descending order. Finally, the SVM classifier is used to implement feature selection according to the classification accuracy of feature combination which takes MIV order of feature as a reference. The simulation experiments are carried out with three standard data sets of UCI, and the results show that this method can not only effectively reduce the feature dimension and high classification accuracy, but also ensure good robustness.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Miao Fan ◽  
Ashutosh Sharma

PurposeIn order to improve the accuracy of project cost prediction, considering the limitations of existing models, the construction cost prediction model based on SVM (Standard Support Vector Machine) and LSSVM (Least Squares Support Vector Machine) is put forward.Design/methodology/approachIn the competitive growth and industries 4.0, the prediction in the cost plays a key role.FindingsAt the same time, the original data is dimensionality reduced. The processed data are imported into the SVM and LSSVM models for training and prediction respectively, and the prediction results are compared and analyzed and a more reasonable prediction model is selected.Originality/valueThe prediction result is further optimized by parameter optimization. The relative error of the prediction model is within 7%, and the prediction accuracy is high and the result is stable.


Sign in / Sign up

Export Citation Format

Share Document