NCGAN:A neural adversarial collaborative filtering for recommender system

Author(s):  
Jinyang Sun ◽  
Baisong Liu ◽  
Hao Ren ◽  
Weiming Huang

The major challenge of recommendation system (RS) based on implict feedback is to accurately model users’ preferences from their historical feedback. Nowadays, researchers has tried to apply adversarial technique in RS, which had presented successful results in various domains. To a certain extent, the use of adversarial technique improves the modeling of users’ preferences. Nonetheless, there are still many problems to be solved, such as insufficient representation and low-level interaction. In this paper, we propose a recommendation algorithm NCGAN which combines neural collaborative filtering and generative adversarial network (GAN). We use the neural networks to extract users’ non-linear characteristics. At the same time, we integrate the GAN framework to guide the recommendation model training. Among them, the generator aims to make user recommendations and the discriminator is equivalent to a measurement tool which could measure the distance between the generated distribution and users’ ground distribution. Through comparison with other existing recommendation algorithms, our algorithm show better experimental performance in all indicators.

Author(s):  
A.V. Prosvetov

Widely used recommendation systems do not meet all industry requirements, so the search for more advanced methods for creating recommendations continues. The proposed new methods based on Generative Adversarial Networks (GAN) have a theoretical comparison with other recommendation algorithms; however, real-world comparisons are needed to introduce new methods in the industry. In our work, we compare recommendations from the Generative Adversarial Network with recommendation from the Deep Semantic Similarity Model (DSSM) on real-world case of airflight tickets. We found a way to train the GAN so that users receive appropriate recommendations, and during A/B testing, we noted that the GAN-based recommendation system can successfully compete with other neural networks in generating recommendations. One of the advantages of the proposed approach is that the GAN training process avoids a negative sampling, which causes a number of distortions in the final ratings of recommendations. Due to the ability of the GAN to generate new objects from the distribution of the training set, we assume that the Conditional GAN is able to solve the cold start problem.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Zhijun Zhang ◽  
Gongwen Xu ◽  
Pengfei Zhang

Aiming at data sparsity and timeliness in traditional E-commerce collaborative filtering recommendation algorithms, when constructing user-item rating matrix, this paper utilizes the feature that commodities in E-commerce system belong to different levels to fill in nonrated items by calculating RF/IRF of the commodity’s corresponding level. In the recommendation prediction stage, considering timeliness of the recommendation system, time weighted based recommendation prediction formula is adopted to design a personalized recommendation model by integrating level filling method and rating time. The experimental results on real dataset verify the feasibility and validity of the algorithm and it owns higher predicting accuracy compared with present recommendation algorithms.


2020 ◽  
Vol 14 ◽  
Author(s):  
Amreen Ahmad ◽  
Tanvir Ahmad ◽  
Ishita Tripathi

: The immense growth of information has led to the wide usage of recommender systems for retrieving relevant information. One of the widely used methods for recommendation is collaborative filtering. However, such methods suffer from two problems, scalability and sparsity. In the proposed research, the two issues of collaborative filtering are addressed and a cluster-based recommender system is proposed. For the identification of potential clusters from the underlying network, Shapley value concept is used, which divides users into different clusters. After that, the recommendation algorithm is performed in every respective cluster. The proposed system recommends an item to a specific user based on the ratings of the item’s different attributes. Thus, it reduces the running time of the overall algorithm, since it avoids the overhead of computation involved when the algorithm is executed over the entire dataset. Besides, the security of the recommender system is one of the major concerns nowadays. Attackers can come in the form of ordinary users and introduce bias in the system to force the system function that is advantageous for them. In this paper, we identify different attack models that could hamper the security of the proposed cluster-based recommender system. The efficiency of the proposed research is validated by conducting experiments on student dataset.


2020 ◽  
Vol 34 (05) ◽  
pp. 8830-8837
Author(s):  
Xin Sheng ◽  
Linli Xu ◽  
Junliang Guo ◽  
Jingchang Liu ◽  
Ruoyu Zhao ◽  
...  

We propose a novel introspective model for variational neural machine translation (IntroVNMT) in this paper, inspired by the recent successful application of introspective variational autoencoder (IntroVAE) in high quality image synthesis. Different from the vanilla variational NMT model, IntroVNMT is capable of improving itself introspectively by evaluating the quality of the generated target sentences according to the high-level latent variables of the real and generated target sentences. As a consequence of introspective training, the proposed model is able to discriminate between the generated and real sentences of the target language via the latent variables generated by the encoder of the model. In this way, IntroVNMT is able to generate more realistic target sentences in practice. In the meantime, IntroVNMT inherits the advantages of the variational autoencoders (VAEs), and the model training process is more stable than the generative adversarial network (GAN) based models. Experimental results on different translation tasks demonstrate that the proposed model can achieve significant improvements over the vanilla variational NMT model.


2021 ◽  
Vol 235 ◽  
pp. 03035
Author(s):  
jiaojiao Lv ◽  
yingsi Zhao

Recommendation system is unable to achive the optimal algorithm, recommendation system precision problem into bottleneck. Based on the perspective of product marketing, paper takes the inherent attribute as the classification standard and focuses on the core problem of “matching of product classification and recommendation algorithm of users’ purchase demand”. Three hypotheses are proposed: (1) inherent attributes of the product directly affect user demand; (2) classified product is suitable for different recommendation algorithms; (3) recommendation algorithm integration can achieve personalized customization. Based on empirical research on the relationship between characteristics of recommendation information (independent variable) and purchase intention (dependent variable), it is concluded that predictability and difference of recommendation information are not fully perceived and stimulation is insufficient. Therefore, SIS dynamic network model based on the distribution model of SIS virus is constructed. It discusses the spreading path of recommendation information and “infection” situation of consumers to enhance accurate matching of recommendation system.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hui Ning ◽  
Qian Li

Collaborative filtering technology is currently the most successful and widely used technology in the recommendation system. It has achieved rapid development in theoretical research and practice. It selects information and similarity relationships based on the user’s history and collects others that are the same as the user’s hobbies. User’s evaluation information is to generate recommendations. The main research is the inadequate combination of context information and the mining of new points of interest in the context-aware recommendation process. On the basis of traditional recommendation technology, in view of the characteristics of the context information in music recommendation, a personalized and personalized music based on popularity prediction is proposed. Recommended algorithm is MRAPP (Media Recommendation Algorithm based on Popularity Prediction). The algorithm first analyzes the user’s contextual information under music recommendation and classifies and models the contextual information. The traditional content-based recommendation technology CB calculates the recommendation results and then, for the problem that content-based recommendation technology cannot recommend new points of interest for users, introduces the concept of popularity. First, we use the memory and forget function to reduce the score and then consider user attributes and product attributes to calculate similarity; secondly, we use logistic regression to train feature weights; finally, appropriate weights are used to combine user-based and item-based collaborative filtering recommendation results. Based on the above improvements, the improved collaborative filtering recommendation algorithm in this paper has greatly improved the prediction accuracy. Through theoretical proof and simulation experiments, the effectiveness of the MRAPP algorithm is demonstrated.


2014 ◽  
Vol 610 ◽  
pp. 717-721 ◽  
Author(s):  
Yan Gao ◽  
Jing Bo Xia ◽  
Jing Jing Ji ◽  
Ling Ma

— Among algorithms in recommendation system, Collaborative Filtering (CF) is a popular one. However, the CF methods can’t guarantee the safety of the user rating data which cause private preserving issue. In general, there are four kinds of methods to solve private preserving: Perturbation, randomization, swapping and encryption. In this paper, we mimic algorithms which attack the privacy-preserving methods with randomized perturbation techniques. After leaking part of rating history of a customer, we can infer this customer’s other rating history. At the end, we propose an algorithm to enhance the system so as to avoid being attacked.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Biao Cai ◽  
Xiaowang Yang ◽  
Yusheng Huang ◽  
Hongjun Li ◽  
Qiang Sang

Recommendation systems are used when searching online databases. As such they are very important tools because they provide users with predictions of the outcomes of different potential choices and help users to avoid information overload. They can be used on e-commerce websites and have attracted considerable attention in the scientific community. To date, many personalized recommendation algorithms have aimed to improve recommendation accuracy from the perspective of vertex similarities, such as collaborative filtering and mass diffusion. However, diversity is also an important evaluation index in the recommendation algorithm. In order to study both the accuracy and diversity of a recommendation algorithm at the same time, this study introduced a “third dimension” to the commonly used user/product two-dimensional recommendation, and a recommendation algorithm is proposed that is based on a triangular area (TR algorithm). The proposed algorithm combines the Markov chain and collaborative filtering method to make recommendations for users by building a triangle model, making use of the triangulated area. Additionally, recommendation algorithms based on a triangulated area are parameter-free and are more suitable for applications in real environments. Furthermore, the experimental results showed that the TR algorithm had better performance on diversity and novelty for real datasets of MovieLens-100K and MovieLens-1M than did the other benchmark methods.


2010 ◽  
Vol 21 (10) ◽  
pp. 1217-1227 ◽  
Author(s):  
WEI ZENG ◽  
MING-SHENG SHANG ◽  
QIAN-MING ZHANG ◽  
LINYUAN LÜ ◽  
TAO ZHOU

Recommender systems are becoming a popular and important set of personalization techniques that assist individual users with navigating through the rapidly growing amount of information. A good recommender system should be able to not only find out the objects preferred by users, but also help users in discovering their personalized tastes. The former corresponds to high accuracy of the recommendation, while the latter to high diversity. A big challenge is to design an algorithm that provides both highly accurate and diverse recommendation. Traditional recommendation algorithms only take into account the contributions of similar users, thus, they tend to recommend popular items for users ignoring the diversity of recommendations. In this paper, we propose a recommendation algorithm by considering both the effects of similar and dissimilar users under the framework of collaborative filtering. Extensive analyses on three datasets, namely MovieLens, Netflix and Amazon, show that our method performs much better than the standard collaborative filtering algorithm for both accuracy and diversity.


Sign in / Sign up

Export Citation Format

Share Document