An automatic brain tumor segmentation using modified inception module based U-Net model

2021 ◽  
pp. 1-12
Author(s):  
K. Sambath Kumar ◽  
A. Rajendran

Manual segmentation of brain tumor is not only a tedious task that may bring human mistakes. An automatic segmentation gives results faster, and it extends the survival rate with an earlier treatment plan. So, an automatic brain tumor segmentation model, modified inception module based U-Net (IMU-Net) proposed. It takes Magnetic resonance (MR) images from the BRATS 2017 training dataset with four modalities (FLAIR, T1, T1ce, and T2). The concatenation of two series 3×3 kernels, one 5×5, and one 1×1 convolution kernels are utilized to extract the whole tumor (WT), core tumor (CT), and enhance tumor (ET). The modified inception module (IM) collects all the relevant features and provides better segmentation results. The proposed deep learning model contains 40 convolution layers and utilizes intensity normalization and data augmentation operation for further improvement. It achieved the mean dice similarity coefficient (DSC) of 0.90, 0.77, 0.74, and the mean Intersection over Union (IOU) of 0.79, 0.70, 0.70 for WT, CT, and ET during the evaluation.

2021 ◽  
Author(s):  
Amishi Vijay ◽  
Jasleen Saini ◽  
B.S. Saini

A significant analysis is routine for Brain Tumor patients and it depends on accurate segmentation of Region of Interest. In automatic segmentation, field deep learning algorithms are attaining interest after they have performed very well in various ImageNet competitions. This review focuses on state-of-the-art Deep Learning Algorithms which are applied to Brain Tumor Segmentation. First, we review the methods of brain tumor segmentation, next the different deep learning algorithms and their performance measures like sensitivity, specificity and Dice similarity Coefficient (DSC) are discussed and Finally, we discuss and summarize the current deep learning techniques and identify future scope and trends.


2022 ◽  
Vol 22 (1) ◽  
pp. 1-30
Author(s):  
Rahul Kumar ◽  
Ankur Gupta ◽  
Harkirat Singh Arora ◽  
Balasubramanian Raman

Brain tumors are one of the critical malignant neurological cancers with the highest number of deaths and injuries worldwide. They are categorized into two major classes, high-grade glioma (HGG) and low-grade glioma (LGG), with HGG being more aggressive and malignant, whereas LGG tumors are less aggressive, but if left untreated, they get converted to HGG. Thus, the classification of brain tumors into the corresponding grade is a crucial task, especially for making decisions related to treatment. Motivated by the importance of such critical threats to humans, we propose a novel framework for brain tumor classification using discrete wavelet transform-based fusion of MRI sequences and Radiomics feature extraction. We utilized the Brain Tumor Segmentation 2018 challenge training dataset for the performance evaluation of our approach, and we extract features from three regions of interest derived using a combination of several tumor regions. We used wrapper method-based feature selection techniques for selecting a significant set of features and utilize various machine learning classifiers, Random Forest, Decision Tree, and Extra Randomized Tree for training the model. For proper validation of our approach, we adopt the five-fold cross-validation technique. We achieved state-of-the-art performance considering several performance metrics, 〈 Acc , Sens , Spec , F1-score , MCC , AUC 〉 ≡ 〈 98.60%, 99.05%, 97.33%, 99.05%, 96.42%, 98.19% 〉, where Acc , Sens , Spec , F1-score , MCC , and AUC represents the accuracy, sensitivity, specificity, F1-score, Matthews correlation coefficient, and area-under-the-curve, respectively. We believe our proposed approach will play a crucial role in the planning of clinical treatment and guidelines before surgery.


2021 ◽  
Author(s):  
Rupal Agravat ◽  
Mehul Raval

<div>Glioma is the most deadly brain tumor with high mortality. Treatment planning by human experts depends on the proper diagnosis of physical symptoms along with Magnetic Resonance(MR) image analysis. Highly variability of a brain tumor in terms of size, shape, location, and a high volume of MR images makes the analysis time-consuming. Automatic segmentation methods achieve a reduction in time with excellent reproducible results.</div><div>The article aims to survey the advancement of automated methods for Glioma brain tumor segmentation. It is also essential to make an objective evaluation of various models based on the benchmark. Therefore, the 2012 - 2019 BraTS challenges database evaluates state-of-the-art methods. The complexity of tasks under the challenge has grown from segmentation (Task1) to overall survival prediction (Task 2) to uncertainty prediction for classification (Task 3). The paper covers the complete gamut of brain tumor segmentation using handcrafted features to deep neural network models for Task 1. The aim is to showcase a complete change of trends in automated brain tumor models. The paper also covers end to end joint models involving brain tumor segmentation and overall survival prediction. All the methods are probed, and parameters that affect performance are tabulated and analyzed.</div>


2019 ◽  
Vol 8 (4) ◽  
pp. 2051-2054

Medical image processing is an important task in current scenario as more and more humans are diagnosed with various medical issues. Brain tumor (BT) is one of the problems that is increasing at a rapid rate and its early detection is important in increasing the survival rate of humans. Detection of tumor from Magnetic Resonance Image (MRI) of brain is very difficult when done manually and also time consuming. Further the tumors assume different shapes and may be present in any portion of the brain. Hence identification of the tumor poses an important task in the lives of human and it is necessary to identify its exact position in the brain and the affected regions. The proposed algorithm makes use of deep learning concepts for automatic segmentation of the tumor from the MRI brain images. The algorithm is implemented using MATLAB and an accuracy of 99.1% is achieved.


Author(s):  
V. K. Deepak ◽  
R. Sarath

In the medical image-processing field brain tumor segmentation is aquintessential task. Thereby early diagnosis gives us a chance of increasing survival rate. It will be way much complex and time consuming when comes to processing large amount of MRI images manually, so for that we need an automatic way of brain tumor image segmentation process. This paper aims to gives a comparative study of brain tumor segmentation, which are MRI-based. So recent methods of automatic segmentation along with advanced techniques gives us an improved result and can solve issue better than any other methods. Therefore, this paper brings comparative analysis of three models such as Deformable model of Fuzzy C-Mean clustering (DMFCM), Adaptive Cluster with Super Pixel Segmentation (ACSP) and Grey Wolf Optimization based ACSP (GWO_ACSP) and these are tested on CANCER IMAGE ACHRCHIEVE which is a preparation information base containing High Grade and Low-Grade astrocytoma tumors. Here boundaries including Accuracy, Dice coefficient, Jaccard score and MCC are assessed and along these lines produce the outcomes. From this examination the test consequences of Grey Wolf Optimization based ACSP (GWO_ACSP) gives better answer for mind tumor division issue.


2021 ◽  
Author(s):  
Shidong Li ◽  
Jianwei Liu ◽  
Zhanjie Song

Abstract Since magnetic resonance imaging (MRI) has superior soft tissue contrast, contouring (brain) tumor accurately by MRI images is essential in medical image processing. Segmenting tumor accurately is immensely challenging, since tumor and normal tissues are often inextricably intertwined in the brain. It is also extremely time consuming manually. Late deep learning techniques start to show reasonable success in brain tumor segmentation automatically. The purpose of this study is to develop a new region-ofinterest-aided (ROI-aided) deep learning technique for automatic brain tumor MRI segmentation. The method consists of two major steps. Step one is to use a 2D network with U-Net architecture to localize the tumor ROI, which is to reduce the impact of normal tissue’s disturbance. Then a 3D U-Net is performed in step 2 for tumor segmentation within identified ROI. The proposed method is validated on MICCAI BraTS 2015 Challenge with 220 high Gliomas grade (HGG) and 54 low Gliomas grade (LGG) patients’ data. The Dice similarity coefficient and the Hausdorff distance between the manual tumor contour and that segmented by the proposed method are 0.876 ±0.068 and 3.594±1.347 mm, respectively. These numbers are indications that our proposed method is an effective ROI-aided deep learning strategy for brain MRI tumor segmentation, and a valid and useful tool in medical image processing.


2021 ◽  
Author(s):  
Radhika Malhotra ◽  
Jasleen Saini ◽  
Barjinder Singh Saini ◽  
Savita Gupta

In the past decade, there has been a remarkable evolution of convolutional neural networks (CNN) for biomedical image processing. These improvements are inculcated in the basic deep learning-based models for computer-aided detection and prognosis of various ailments. But implementation of these CNN based networks is highly dependent on large data in case of supervised learning processes. This is needed to tackle overfitting issues which is a major concern in supervised techniques. Overfitting refers to the phenomenon when a network starts learning specific patterns of the input such that it fits well on the training data but leads to poor generalization abilities on unseen data. The accessibility of enormous quantity of data limits the field of medical domain research. This paper focuses on utility of data augmentation (DA) techniques, which is a well-recognized solution to the problem of limited data. The experiments were performed on the Brain Tumor Segmentation (BraTS) dataset which is available online. The results signify that different DA approaches have upgraded the accuracies for segmenting brain tumor boundaries using CNN based model.


2021 ◽  
Author(s):  
Rupal Agravat ◽  
Mehul Raval

<div>Glioma is the most deadly brain tumor with high mortality. Treatment planning by human experts depends on the proper diagnosis of physical symptoms along with Magnetic Resonance(MR) image analysis. Highly variability of a brain tumor in terms of size, shape, location, and a high volume of MR images makes the analysis time-consuming. Automatic segmentation methods achieve a reduction in time with excellent reproducible results.</div><div>The article aims to survey the advancement of automated methods for Glioma brain tumor segmentation. It is also essential to make an objective evaluation of various models based on the benchmark. Therefore, the 2012 - 2019 BraTS challenges database evaluates state-of-the-art methods. The complexity of tasks under the challenge has grown from segmentation (Task1) to overall survival prediction (Task 2) to uncertainty prediction for classification (Task 3). The paper covers the complete gamut of brain tumor segmentation using handcrafted features to deep neural network models for Task 1. The aim is to showcase a complete change of trends in automated brain tumor models. The paper also covers end to end joint models involving brain tumor segmentation and overall survival prediction. All the methods are probed, and parameters that affect performance are tabulated and analyzed.</div>


2021 ◽  
Author(s):  
Pankaj Eknath Kasar ◽  
Shivajirao M. Jadhav ◽  
Vineet Kansal

Abstract The tumor detection is major challenging task in brain tumor quantitative evaluation. In recent years, owing to non-invasive and strong soft tissue comparison, Magnetic Resonance Imaging (MRI) has gained great interest. MRI is a commonly used image modality technique to locate brain tumors. An immense amount of data is produced by the MRI. Heterogeneity, isointense and hypointense tumor properties restrict manual segmentation in a fair period of time, thus restricting the use of reliable quantitative measures in clinical practice. In the clinical practice manual segmentation task is quite time consuming and their performance is highly depended on the operator’s experience. Accurate and automated tumor segmentation techniques are also needed; however, the severe spatial and structural heterogeneity of brain tumors makes automatic segmentation a difficult job. This paper proposes fully automatic segmentation of brain tumors using encoder-decoder based convolutional neural networks. The paper focuses on well-known semantic segmentation deep neural networks i.e., UNET and SEGNET for segmenting tumors from Brain MRI images. The networks are trained and tested using freely accessible standard dataset, with Dice Similarity Coefficient (DSC) as metric for whole predicted image i.e., including tumor and background. UNET’s average DSC on test dataset is 0.76 whereas for SEGNET we got average DSC 0.67. The evaluation of results proves that UNET is having better performance than SEGNET.


Sign in / Sign up

Export Citation Format

Share Document