Automated Early Detection of Astrocytomas Tumor Based on Optimized Adaptive Cluster with Super Pixel Model

Author(s):  
V. K. Deepak ◽  
R. Sarath

In the medical image-processing field brain tumor segmentation is aquintessential task. Thereby early diagnosis gives us a chance of increasing survival rate. It will be way much complex and time consuming when comes to processing large amount of MRI images manually, so for that we need an automatic way of brain tumor image segmentation process. This paper aims to gives a comparative study of brain tumor segmentation, which are MRI-based. So recent methods of automatic segmentation along with advanced techniques gives us an improved result and can solve issue better than any other methods. Therefore, this paper brings comparative analysis of three models such as Deformable model of Fuzzy C-Mean clustering (DMFCM), Adaptive Cluster with Super Pixel Segmentation (ACSP) and Grey Wolf Optimization based ACSP (GWO_ACSP) and these are tested on CANCER IMAGE ACHRCHIEVE which is a preparation information base containing High Grade and Low-Grade astrocytoma tumors. Here boundaries including Accuracy, Dice coefficient, Jaccard score and MCC are assessed and along these lines produce the outcomes. From this examination the test consequences of Grey Wolf Optimization based ACSP (GWO_ACSP) gives better answer for mind tumor division issue.

2021 ◽  
Vol 7 (2) ◽  
pp. 19
Author(s):  
Tirivangani Magadza ◽  
Serestina Viriri

Quantitative analysis of the brain tumors provides valuable information for understanding the tumor characteristics and treatment planning better. The accurate segmentation of lesions requires more than one image modalities with varying contrasts. As a result, manual segmentation, which is arguably the most accurate segmentation method, would be impractical for more extensive studies. Deep learning has recently emerged as a solution for quantitative analysis due to its record-shattering performance. However, medical image analysis has its unique challenges. This paper presents a review of state-of-the-art deep learning methods for brain tumor segmentation, clearly highlighting their building blocks and various strategies. We end with a critical discussion of open challenges in medical image analysis.


2022 ◽  
Vol 22 (1) ◽  
pp. 1-30
Author(s):  
Rahul Kumar ◽  
Ankur Gupta ◽  
Harkirat Singh Arora ◽  
Balasubramanian Raman

Brain tumors are one of the critical malignant neurological cancers with the highest number of deaths and injuries worldwide. They are categorized into two major classes, high-grade glioma (HGG) and low-grade glioma (LGG), with HGG being more aggressive and malignant, whereas LGG tumors are less aggressive, but if left untreated, they get converted to HGG. Thus, the classification of brain tumors into the corresponding grade is a crucial task, especially for making decisions related to treatment. Motivated by the importance of such critical threats to humans, we propose a novel framework for brain tumor classification using discrete wavelet transform-based fusion of MRI sequences and Radiomics feature extraction. We utilized the Brain Tumor Segmentation 2018 challenge training dataset for the performance evaluation of our approach, and we extract features from three regions of interest derived using a combination of several tumor regions. We used wrapper method-based feature selection techniques for selecting a significant set of features and utilize various machine learning classifiers, Random Forest, Decision Tree, and Extra Randomized Tree for training the model. For proper validation of our approach, we adopt the five-fold cross-validation technique. We achieved state-of-the-art performance considering several performance metrics, 〈 Acc , Sens , Spec , F1-score , MCC , AUC 〉 ≡ 〈 98.60%, 99.05%, 97.33%, 99.05%, 96.42%, 98.19% 〉, where Acc , Sens , Spec , F1-score , MCC , and AUC represents the accuracy, sensitivity, specificity, F1-score, Matthews correlation coefficient, and area-under-the-curve, respectively. We believe our proposed approach will play a crucial role in the planning of clinical treatment and guidelines before surgery.


2021 ◽  
Author(s):  
Rupal Agravat ◽  
Mehul Raval

<div>Glioma is the most deadly brain tumor with high mortality. Treatment planning by human experts depends on the proper diagnosis of physical symptoms along with Magnetic Resonance(MR) image analysis. Highly variability of a brain tumor in terms of size, shape, location, and a high volume of MR images makes the analysis time-consuming. Automatic segmentation methods achieve a reduction in time with excellent reproducible results.</div><div>The article aims to survey the advancement of automated methods for Glioma brain tumor segmentation. It is also essential to make an objective evaluation of various models based on the benchmark. Therefore, the 2012 - 2019 BraTS challenges database evaluates state-of-the-art methods. The complexity of tasks under the challenge has grown from segmentation (Task1) to overall survival prediction (Task 2) to uncertainty prediction for classification (Task 3). The paper covers the complete gamut of brain tumor segmentation using handcrafted features to deep neural network models for Task 1. The aim is to showcase a complete change of trends in automated brain tumor models. The paper also covers end to end joint models involving brain tumor segmentation and overall survival prediction. All the methods are probed, and parameters that affect performance are tabulated and analyzed.</div>


2019 ◽  
Vol 8 (4) ◽  
pp. 2051-2054

Medical image processing is an important task in current scenario as more and more humans are diagnosed with various medical issues. Brain tumor (BT) is one of the problems that is increasing at a rapid rate and its early detection is important in increasing the survival rate of humans. Detection of tumor from Magnetic Resonance Image (MRI) of brain is very difficult when done manually and also time consuming. Further the tumors assume different shapes and may be present in any portion of the brain. Hence identification of the tumor poses an important task in the lives of human and it is necessary to identify its exact position in the brain and the affected regions. The proposed algorithm makes use of deep learning concepts for automatic segmentation of the tumor from the MRI brain images. The algorithm is implemented using MATLAB and an accuracy of 99.1% is achieved.


2021 ◽  
Author(s):  
Shidong Li ◽  
Jianwei Liu ◽  
Zhanjie Song

Abstract Since magnetic resonance imaging (MRI) has superior soft tissue contrast, contouring (brain) tumor accurately by MRI images is essential in medical image processing. Segmenting tumor accurately is immensely challenging, since tumor and normal tissues are often inextricably intertwined in the brain. It is also extremely time consuming manually. Late deep learning techniques start to show reasonable success in brain tumor segmentation automatically. The purpose of this study is to develop a new region-ofinterest-aided (ROI-aided) deep learning technique for automatic brain tumor MRI segmentation. The method consists of two major steps. Step one is to use a 2D network with U-Net architecture to localize the tumor ROI, which is to reduce the impact of normal tissue’s disturbance. Then a 3D U-Net is performed in step 2 for tumor segmentation within identified ROI. The proposed method is validated on MICCAI BraTS 2015 Challenge with 220 high Gliomas grade (HGG) and 54 low Gliomas grade (LGG) patients’ data. The Dice similarity coefficient and the Hausdorff distance between the manual tumor contour and that segmented by the proposed method are 0.876 ±0.068 and 3.594±1.347 mm, respectively. These numbers are indications that our proposed method is an effective ROI-aided deep learning strategy for brain MRI tumor segmentation, and a valid and useful tool in medical image processing.


2021 ◽  
Vol 59 (5) ◽  
Author(s):  
Truong Van Pham ◽  
Thao Thi Tran

This paper presents an approach for brain tumor segmentation based on deep neural networks. The paper proposes to utilize U-Net as an architecture of the approach to capture the fine and soars information from input images. Especially, to train the network, instead of using commonly used cross-entropy loss, dice loss or both, in this study, we propose to employ a new loss function including Level set loss and Dice loss function. The level set loss is inspired from Mumford-Shah functional for unsupervised task. Meanwhile, the Dice loss function measures the similarity between the predicted mask and desired mask. The proposed approach is then applied to segment brain tumor from MRI images as well as evaluated and compared with other approaches on a dataset of nearly 4000 brain MRI scans. Experiment results show that the proposed approach achieves high performance in terms of Dice coefficient and Intersection over Union (IoU) scores.


2021 ◽  
Author(s):  
Rupal Agravat ◽  
Mehul Raval

<div>Glioma is the most deadly brain tumor with high mortality. Treatment planning by human experts depends on the proper diagnosis of physical symptoms along with Magnetic Resonance(MR) image analysis. Highly variability of a brain tumor in terms of size, shape, location, and a high volume of MR images makes the analysis time-consuming. Automatic segmentation methods achieve a reduction in time with excellent reproducible results.</div><div>The article aims to survey the advancement of automated methods for Glioma brain tumor segmentation. It is also essential to make an objective evaluation of various models based on the benchmark. Therefore, the 2012 - 2019 BraTS challenges database evaluates state-of-the-art methods. The complexity of tasks under the challenge has grown from segmentation (Task1) to overall survival prediction (Task 2) to uncertainty prediction for classification (Task 3). The paper covers the complete gamut of brain tumor segmentation using handcrafted features to deep neural network models for Task 1. The aim is to showcase a complete change of trends in automated brain tumor models. The paper also covers end to end joint models involving brain tumor segmentation and overall survival prediction. All the methods are probed, and parameters that affect performance are tabulated and analyzed.</div>


2011 ◽  
Vol 219-220 ◽  
pp. 1342-1346 ◽  
Author(s):  
Ying Wang ◽  
Zhi Xian Lin ◽  
Jian Guo Cao ◽  
Mao Qing Li

In this paper, an automatic segmentation system was developed for MRI brain tumor. Local region-based active contour models were suitable for heterogeneous features of brain MRI image. But the models are sensitive to initial contour, which generally requires manual setting. An automatic MRI brain tumor segmentation system were developed based on localized contour models, which can identify tumor-dominant slice, set initial contour automatically and segment tumor’s contours from all MRI slices autonomously. K-means clustering and grayscale analysis were combined to identify tumor-dominant slice. Multi-threshold algorithm with the aid of erosion and dilation operators was adopted to obtain an initial contour for the tumor-dominant slice. The segmentation contour from the local active contour models was applied as initial contours of two-side neighboring slices. MRI brain tumor data were applied to validate the automatic segmentation system.


Forecasting ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Maxwell Uhlich ◽  
Russell Greiner ◽  
Bret Hoehn ◽  
Melissa Woghiren ◽  
Idanis Diaz ◽  
...  

Automated brain tumor segmenters typically run a “skull-stripping” pre-process to extract the brain from the 3D image, before segmenting the area of interest within the extracted volume. We demonstrate that an effective existing segmenter can be improved by replacing its skull-stripper component with one that instead uses a registration-based approach. In particular, we compare our automated brain segmentation system with the original system as well as three other approaches that differ only by using a different skull-stripper—BET, HWA, and ROBEX: (1) Over scans of 120 patients with brain tumors, our system’s segmentation accuracy (Dice score with respect to expert segmentation) is 8.6% (resp. 2.7%) better than the original system on gross tumor volumes (resp. edema); (2) Over 103 scans of controls, the new system found 92.9% (resp. 57.8%) fewer false positives on T1C (resp. FLAIR) volumes. (The other three methods were significantly worse on both tasks). Finally, the new registration-based approach is over 15% faster than the original, requiring on average only 178 CPU seconds per volume.


Sign in / Sign up

Export Citation Format

Share Document