scholarly journals A Review of Brain Tumor Image Segmentation of MR Images Using Deep Learning Methods

Author(s):  
Amishi Vijay ◽  
Jasleen Saini ◽  
B.S. Saini

A significant analysis is routine for Brain Tumor patients and it depends on accurate segmentation of Region of Interest. In automatic segmentation, field deep learning algorithms are attaining interest after they have performed very well in various ImageNet competitions. This review focuses on state-of-the-art Deep Learning Algorithms which are applied to Brain Tumor Segmentation. First, we review the methods of brain tumor segmentation, next the different deep learning algorithms and their performance measures like sensitivity, specificity and Dice similarity Coefficient (DSC) are discussed and Finally, we discuss and summarize the current deep learning techniques and identify future scope and trends.

2021 ◽  
Author(s):  
Shidong Li ◽  
Jianwei Liu ◽  
Zhanjie Song

Abstract Since magnetic resonance imaging (MRI) has superior soft tissue contrast, contouring (brain) tumor accurately by MRI images is essential in medical image processing. Segmenting tumor accurately is immensely challenging, since tumor and normal tissues are often inextricably intertwined in the brain. It is also extremely time consuming manually. Late deep learning techniques start to show reasonable success in brain tumor segmentation automatically. The purpose of this study is to develop a new region-ofinterest-aided (ROI-aided) deep learning technique for automatic brain tumor MRI segmentation. The method consists of two major steps. Step one is to use a 2D network with U-Net architecture to localize the tumor ROI, which is to reduce the impact of normal tissue’s disturbance. Then a 3D U-Net is performed in step 2 for tumor segmentation within identified ROI. The proposed method is validated on MICCAI BraTS 2015 Challenge with 220 high Gliomas grade (HGG) and 54 low Gliomas grade (LGG) patients’ data. The Dice similarity coefficient and the Hausdorff distance between the manual tumor contour and that segmented by the proposed method are 0.876 ±0.068 and 3.594±1.347 mm, respectively. These numbers are indications that our proposed method is an effective ROI-aided deep learning strategy for brain MRI tumor segmentation, and a valid and useful tool in medical image processing.


2021 ◽  
pp. 1-12
Author(s):  
K. Sambath Kumar ◽  
A. Rajendran

Manual segmentation of brain tumor is not only a tedious task that may bring human mistakes. An automatic segmentation gives results faster, and it extends the survival rate with an earlier treatment plan. So, an automatic brain tumor segmentation model, modified inception module based U-Net (IMU-Net) proposed. It takes Magnetic resonance (MR) images from the BRATS 2017 training dataset with four modalities (FLAIR, T1, T1ce, and T2). The concatenation of two series 3×3 kernels, one 5×5, and one 1×1 convolution kernels are utilized to extract the whole tumor (WT), core tumor (CT), and enhance tumor (ET). The modified inception module (IM) collects all the relevant features and provides better segmentation results. The proposed deep learning model contains 40 convolution layers and utilizes intensity normalization and data augmentation operation for further improvement. It achieved the mean dice similarity coefficient (DSC) of 0.90, 0.77, 0.74, and the mean Intersection over Union (IOU) of 0.79, 0.70, 0.70 for WT, CT, and ET during the evaluation.


2021 ◽  
Author(s):  
Pitchai R ◽  
Supraja P ◽  
Razia Sulthana A ◽  
Veeramakali T

Abstract Segmentation of brain tumors is a daunting process comprising the delineation of heterogeneous cancerous tissues and diffuse types in anatomical representations of the brain. Deep learning techniques have recently made important strides in the segmentation of brain tumors. However, owing to the irregularity of the tumor, most of the deep learning-based segmentation techniques are not used directly for tumor detection. Although recent studies are capable of addressing the irregularity issue and retaining permutation invariance, many approaches struggle to catch the valuable high-dimensional local features of finer resolution. Inspired by the fuzzy learning methods and an analysis of the shortcomings of existing methods, an automated fuzzy neighborhood learning-based 3D segmentation technique has been proposed for the detection of cerebrum tumors in 3D images. In this technique, the fuzzy neighborhood function is deeply integrated with the proposed network architecture. This technique has been evaluated on BRATS 2013dataset. The simulation results show that the proposed brain tumor detection technique is superior to other methods in the diagnosis of brain tumors with the dice coefficient of 0.85 and the Jaccard index of 0.74.


2021 ◽  
Vol 7 (2) ◽  
pp. 19
Author(s):  
Tirivangani Magadza ◽  
Serestina Viriri

Quantitative analysis of the brain tumors provides valuable information for understanding the tumor characteristics and treatment planning better. The accurate segmentation of lesions requires more than one image modalities with varying contrasts. As a result, manual segmentation, which is arguably the most accurate segmentation method, would be impractical for more extensive studies. Deep learning has recently emerged as a solution for quantitative analysis due to its record-shattering performance. However, medical image analysis has its unique challenges. This paper presents a review of state-of-the-art deep learning methods for brain tumor segmentation, clearly highlighting their building blocks and various strategies. We end with a critical discussion of open challenges in medical image analysis.


2021 ◽  
Author(s):  
Rupal Agravat ◽  
Mehul Raval

<div>Glioma is the most deadly brain tumor with high mortality. Treatment planning by human experts depends on the proper diagnosis of physical symptoms along with Magnetic Resonance(MR) image analysis. Highly variability of a brain tumor in terms of size, shape, location, and a high volume of MR images makes the analysis time-consuming. Automatic segmentation methods achieve a reduction in time with excellent reproducible results.</div><div>The article aims to survey the advancement of automated methods for Glioma brain tumor segmentation. It is also essential to make an objective evaluation of various models based on the benchmark. Therefore, the 2012 - 2019 BraTS challenges database evaluates state-of-the-art methods. The complexity of tasks under the challenge has grown from segmentation (Task1) to overall survival prediction (Task 2) to uncertainty prediction for classification (Task 3). The paper covers the complete gamut of brain tumor segmentation using handcrafted features to deep neural network models for Task 1. The aim is to showcase a complete change of trends in automated brain tumor models. The paper also covers end to end joint models involving brain tumor segmentation and overall survival prediction. All the methods are probed, and parameters that affect performance are tabulated and analyzed.</div>


2019 ◽  
Vol 8 (4) ◽  
pp. 2051-2054

Medical image processing is an important task in current scenario as more and more humans are diagnosed with various medical issues. Brain tumor (BT) is one of the problems that is increasing at a rapid rate and its early detection is important in increasing the survival rate of humans. Detection of tumor from Magnetic Resonance Image (MRI) of brain is very difficult when done manually and also time consuming. Further the tumors assume different shapes and may be present in any portion of the brain. Hence identification of the tumor poses an important task in the lives of human and it is necessary to identify its exact position in the brain and the affected regions. The proposed algorithm makes use of deep learning concepts for automatic segmentation of the tumor from the MRI brain images. The algorithm is implemented using MATLAB and an accuracy of 99.1% is achieved.


Sign in / Sign up

Export Citation Format

Share Document