Computational analyses of Fe-Chelation by thiofavipiravir

2021 ◽  
pp. 1-9
Author(s):  
Halimeh Rajabzadeh ◽  
Maryam Abbasi ◽  
Mostafa Tohoidian

Existence of iron (Fe) is important for cells of living systems; however, its level of magnitude for those patients infected by novel coronavirus disease (COVID-19) is still a challenging issue. Therefore, such mechanism of function was investigated in this work by assistance of thiofavipiravir (TFav) compounds generated by the well-known favipiravir (Fav) drug used for medication of COVID-19 patents. To this aim, sulfur-substitutions of oxygen atoms of Fav were done and the obtained parent structures were prepared for participating in Fe-chelation function. The results indicated that the modes were suitable for running such Fe-chelation processes, in which favorability and strength the models were ranged in this order: 1O2S-Fe >  1S2S-Fe >  1O2O-Fe >  1S2O-Fe. As a consequence, such idea of sulfur-substitution of Fav drug for more appropriate favorability of participating in Fe-chelation process was sensed by results of this work proposing 1O2S compound as the most favorable one for doing the function. Hence, information about capability of TFav compounds for participating in Fe-chelation processes were provided in this work regarding the challenging issue of Fe-chelation in medication of COVID-19 patients. All results of this work were obtained by performing computations using the density functional theory (DFT) approach

Author(s):  
I. Yu. Sklyadneva ◽  
Rolf Heid ◽  
Pedro Miguel Echenique ◽  
Evgueni Chulkov

Electron-phonon interaction in the Si(111)-supported rectangular √(7 ) ×√3 phases of In is investigated within the density-functional theory and linear-response. For both single-layer and double-layer √(7 ) ×√3 structures, it...


2020 ◽  
Vol 18 (1) ◽  
pp. 357-368
Author(s):  
Kaiwen Zheng ◽  
Kai Guo ◽  
Jing Xu ◽  
Wei Liu ◽  
Junlang Chen ◽  
...  

AbstractCatechin – a natural polyphenol substance – has excellent antioxidant properties for the treatment of diseases, especially for cholesterol lowering. Catechin can reduce cholesterol content in micelles by forming insoluble precipitation with cholesterol, thereby reducing the absorption of cholesterol in the intestine. In this study, to better understand the molecular mechanism of catechin and cholesterol, we studied the interaction between typical catechins and cholesterol by the density functional theory. Results show that the adsorption energies between the four catechins and cholesterol are obviously stronger than that of cholesterol themselves, indicating that catechin has an advantage in reducing cholesterol micelle formation. Moreover, it is found that the molecular interactions of the complexes are mainly due to charge transfer of the aromatic rings of the catechins as well as the hydrogen bond interactions. Unlike the intuitive understanding of a complex formed by hydrogen bond interaction, which is positively correlated with the number of hydrogen bonds, the most stable complexes (epicatechin–cholesterol or epigallocatechin–cholesterol) have only one but stronger hydrogen bond, due to charge transfer of the aromatic rings of catechins.


2021 ◽  
Author(s):  
Takashi Kurogi ◽  
Keiichi Irifune ◽  
Takahiro Enoki ◽  
Kazuhiko Takai

Reduction of CCl4 by CrCl2 in THF afforded a trinuclear chromium(III) carbyne [CrCl(thf)2)]3(μ3-CCl)(μ-Cl)3. The chlorocarbyne complex reacted with aldehydes to afford chloroallylic alcohols and terminal alkynes. The density functional theory...


2015 ◽  
Vol 17 (34) ◽  
pp. 22448-22454 ◽  
Author(s):  
K. Zberecki ◽  
R. Swirkowicz ◽  
J. Barnaś

Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach.


2015 ◽  
Vol 242 ◽  
pp. 434-439 ◽  
Author(s):  
Vasilii E. Gusakov

Within the framework of the density functional theory, the method was developed to calculate the band gap of semiconductors. We have evaluated the band gap for a number of monoatomic and diatomic semiconductors (Sn, Ge, Si, SiC, GaN, C, BN, AlN). The method gives the band gap of almost experimental accuracy. An important point is the fact that the developed method can be used to calculate both localized states (energy deep levels of defects in crystal), and electronic properties of nanostructures.


Sign in / Sign up

Export Citation Format

Share Document